

PROVINCIA DI CHIETI

PROGETTO DEFINITIVO

ADEGUAMENTO DELLE S.S. 81-84 TRATTO GUARDIAGRELE-EST INNESTO S.S. 652 "VAL DI SANGRO"

LOTTO I

RESPONSABILE PROGETTAZIONE:

Dott. Ing. Fabrizio Besozzi Iscritto Albo Ingegneri Provincia di Roma n° 15126

I PROGETTISTI:

Dott. Ing. Fabrizio Besozzi Iscritto Albo Ingegneri Provincia di Roma n' 15126

Dott. Ing. Marco Petrangeli Iscritto Albo Ingegneri Provincia di Roma n° 18744

Dott. Ing. Giovanni Zallocco Iscritto Albo Ingegneri Provincia di Roma n° 5745

COORDINAMENTO ATTIVITA' IN LOCO:

Dott. Arch. Mariano Strizzi Iscritto Albo Architetti Provincia di Chieti n° 97 PROGETTAZIONE: A. T. I.

mandataria

e Studi

mandanti

EM./RE.	DATA	DESCRIZIONE	REDATTO	CONTR.	APPROV.	
Α	OTT. '03	Emissione	A.P. G.C.		G.Z.	

OPERE D'ARTE MAGGIORI VIADOTTI

VIADOTTO "ACQUAROSSA"

RELAZIONE TECNICA E DI PREDIMENSIONAMENTO

SCALA	•	
	•	

CODICE IDENTIFICATIVO :

F	ASE/	LOTTO)
	D	1	

DOC.

OPERA/DISCIPLINA

PROGR.

REV.

INDICE

<u>1</u>	PREMESSA	4
2	CARATTERISTICHE DEI MATERIALI	10
<u>2</u>	CARATTERISTICHE DEI MATERIALI	10
2.1	TENSIONI DI CALCOLO	10
<u>3</u>	NORMATIVE DI RIFERIMENTO	12
<u>2</u>	NORMATIVE DI RIPERIMENTO	12
<u>4</u>	PRESCRIZIONI	13
4.1	PARAMETRI DEL TERRENO	13
4.1.1	PARAMETRI DEL RILEVATO	13
4.1.2	PARAMETRI DEL MISTO CEMENTATO	13
4.2	SPINTA DELLA TERRA	13
<u>5</u>	EFFETTI GLOBALI SPALLA A H=4.80 M	15
5.1 5.1.1	ANALISI DEI CARICHI AZIONI VERTICALI E ORIZZONTALI AGENTI DIRETTAMENTE SULLA SPALLA IN CONDIZI	15 IONI STATICHE.
5.1.2	SOVRASPINTE SULLA SPALLA IN CONDIZIONI SISMICHE.	17
5.1.3	AZIONI PROVENIENTI DALL'IMPALCATO	18
<u>6</u>	EFFETTI GLOBALI SPALLA B – H = 3.30 M	24
<u>7</u>	ANALISI DEI CARICHI	24
7.1.1	AZIONI VERTICALI E ORIZZONTALI AGENTI DIRETTAMENTE SULLA SPALLA IN CONDIZ.	ONI STATICHE.
	24	
7.1.2	SOVRASPINTE SULLA SPALLA IN CONDIZIONI SISMICHE.	25
7.1.3	AZIONI PROVENIENTI DALL'IMPALCATO	26
<u>8</u>	EFFETTI GLOBALI PILA P2 MOBILE	36
8.1	ANALISI DEI CARICHI	36

8.1.1	AZIONI VERTICALI E ORIZZONTALI AGENTI DIRETTAMENTE SULLA PILA IN CONDIZIONI STATICHE.	. 36
8.1.2	AZIONI PILA IN CONDIZIONI SISMICHE	38
8.1.3	AZIONI PROVENIENTI DALL'IMPALCATO	39
<u>9</u>	DETERMINAZIONE DELLE SOLLECITAZIONI E VERIFICHE	47
9.1.1	RIEPILOGO DELLE SOLLECITAZIONI ALL'INTRADOSSO FONDAZIONI	47
9.1.2	SOLLECITAZIONE SUI PALI	50
9.1.3	I PALI DI FONDAZIONE	53
9.1.4	SITUAZIONE GEOTECNICA	53
9.1.5	VERIFICA DI RESISTENZA DEL PALO	54
9.1.6	VERIFICA SPALLA	55
9.1.7	VERIFICA DELLA PARTE DELLA FONDAZIONE TRA I MURI LATERALI E QUELLO FRONTALE	61
<u>10</u>	GLI ELEMENTI SECONDARI	72
10.1 10.1.1	La trave paraghiaia Le azioni	72 72
10.1.2	RIEPILOGO SOLLECITAZIONI	72
10.1.3	LE COMBINAZIONI	76
10.1.4	LE VERIFICHE	77
10.2 10.2.1	IL MURO FRONTALE LE AZIONI	82
10.2.2	RIEPILOGO SOLLECITAZIONI	82
10.2.3	LE COMBINAZIONI	86
10.2.4	LE VERIFICHE	87
10.3 10.3.2	I MURI ANDATORI LA PARTE INFERIORE	91 97
10.3.3	LA PARTE SUPERIORE DEL MURO	104
<u>11</u>	ANALISI PESI PROPRI STRUTTURALI E SOVRACCARICHI PERMANENTI	110
11.1	PESI PROPRI STRUTTURALI (G ₁)	110
11.2	SOVRACCARICHI PERMANENTI PORTATI (G ₂)	110
<u>12</u>	ANALISI DEI SOVRACCARICHI DI ESERCIZIO	110
12.1	CARICHI MOBILI (Q ₁)	110
12.2 12.3	INCREMENTO DINAMICO (Q_2) AZIONE LONGITUDINALE DELLA FRENATURA (Q_2) .	110 111
125	AZIONE LONGITUDINALE DELLA ERENATURA (O2).	111

D1-CL-VI06-001.doc pag. 2 di 137

VI06 – Viadotto Acquarossa

12.4	AZIONE TRASVERSALE CENTRIFUGA (Q ₄).	111
12.5	AZIONE TRASVERSALE DEL VENTO (Q_5) .	111
12.6	AZIONE SISMICA (Q_6) .	111
12.7	AZIONE LONGITUDINALE ATTRITIVA (Q7).	114
12.8 12.8.1	ANALISI DELLA PILA MOBILE P2 VERIFICA PULVINO	11 4 11 <i>6</i>
12.8.2	VERIFICA BRACCIA	121
12.8.3	VERIFICA FUSTO	125
1284	VERIFICA DELLA ZATTERA DI FONDAZIONE	120

D1-CL-VI06-001.doc pag. 3 di 137

1 Premessa

Il presente documento tratta le analisi delle sollecitazioni e le verifiche di resistenza delle sottostrutture relative al viadotto di accesso in c.a.p. Acquarossa.

Il viadotto di accesso è realizzato con quattro travi in c.a.p. a vasca semplicemente poggiate su luci di 28.40m tra loro solidarizzate con il getto di trasversi in asse appoggi poi precompressi e dalla soletta superiore di spessore 30.0 cm, a formare una piattaforma stradale TIPO C1-codice della strada (ex tipo IV C.N.R) con un carreggiata da 10.50 e due marciapiedi laterali per complessivi 13.50 m.

Lo schema di calcolo utilizzato è quello di trave appoggiata – appoggiata, per i carichi verticali, mentre i carichi orizzontali vengono affidati agli appoggi fissi, garantendo la continuità in soletta.

Nel seguito si analizzeranno separatamente le pile e le spalle maggiormente sollecitate.

TABELLA DIMENSIONI PILE E SPALLE

	pk	q strada	Tipo	n° campate affidate	h imp-appo	q appoggi	h pulvino	q est pile	h pile-spalle	q est fond	h fond	q intr fond	h magrone	q fondo scavo
spalla A	5+620,52	225,744	FISSO	2	-2,4	223,344			-4,8	218,544	-2	216,544	-0,15	216,394
pila 1	5+649,72	225,823	MOBILE	-	-2,4	223,423	-1,2	222,223	-7,55	214,673	-1,8	212,873	-0,15	212,723
pila 2	5+679,72	225,905	MOBILE	-	-2,4	223,505	-1,2	222,305	-8,05	214,255	-1,8	212,455	-0,15	212,305
pila 3	5+709,72	225,986	MOBILE	-	-2,4	223,586	-1,2	222,386	-5	217,386	-1,8	215,586	-0,15	215,436
spalla B	5+738,92	226,065	FISSO	2	-2,4	223,665			-3,3	220,365	-2	218,365	-0,15	218,215

Le pile sono costituite da un fusto in c.a. gettato in opera con sezione piena di forma pseudo-rettangolare ed altezza variabile; per il tratto finale di 5m il fusto si divarica presentando in sommità un pulvino che accoglie gli apparecchi di appoggio. (v.fig.1)

Le pile hanno dimensione longitudinale pari a 1.50m e ingombro trasversale di 5.00 m (v.fig.3).

Sono fondate direttamente su plinti prismatici di dimensioni:

SPALLA FISSA A: altezza paramento 4.80m e di dimensioni in pianta BxL = 14.40x14.40 SPALLA FISSA B: altezza paramento 3.30m e di dimensioni in pianta BxL = 14.40x14.40

PILA MOBILE 2: altezza fusto 3.05m e di dimensioni in pianta BxL = 12.0x7.50 m

D1-CL-VI06-001.doc pag. 4 di 137

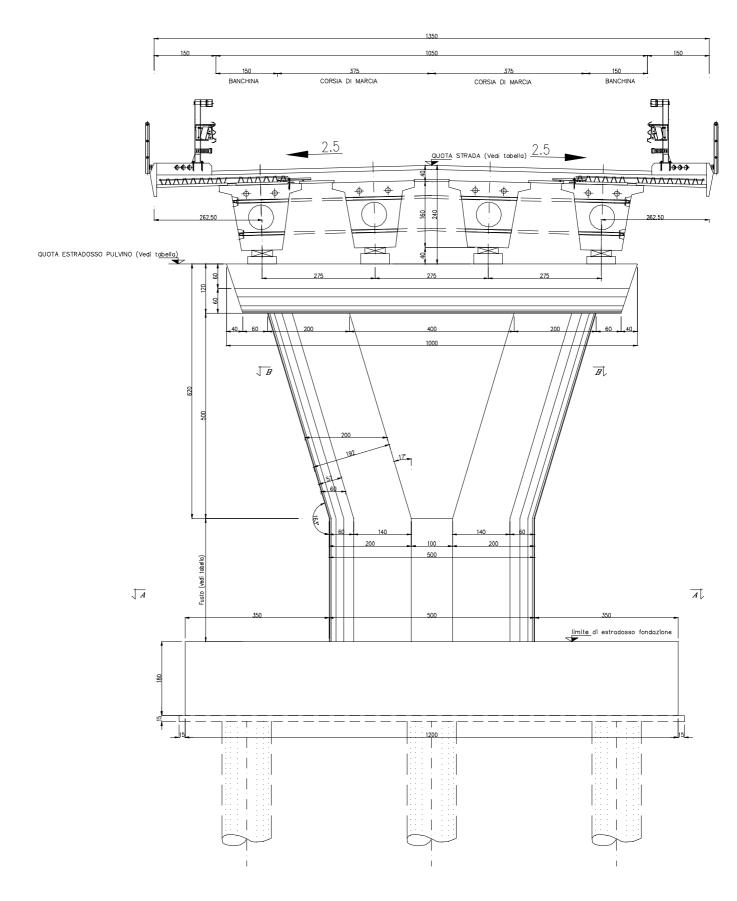


Figura 1: Carpenteria pila 2 Trasversale;

D1-CL-VI06-001.doc pag. 5 di 137

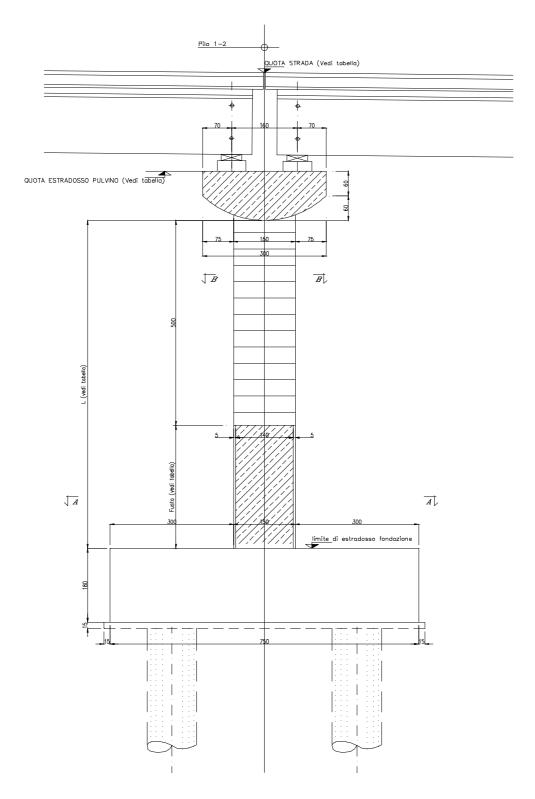
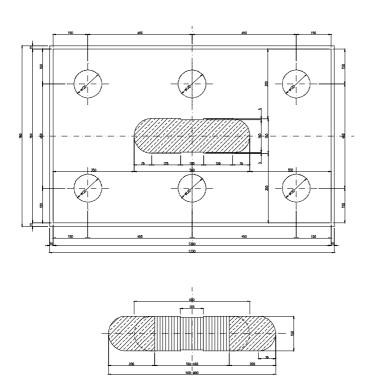



Figura 2: Carpenteria pila 2 Vista longitudinale;

D1-CL-VI06-001.doc pag. 6 di 137

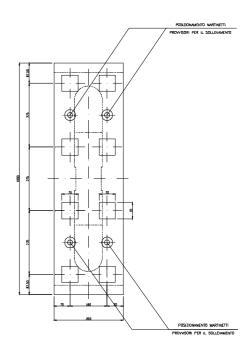


Figura 3: Sezioni della pila allo spiccato fondazione;

D1-CL-VI06-001.doc pag. 7 di 137

Nelle seguenti immagini si riporta le carpenteria delle due spalle fisse :

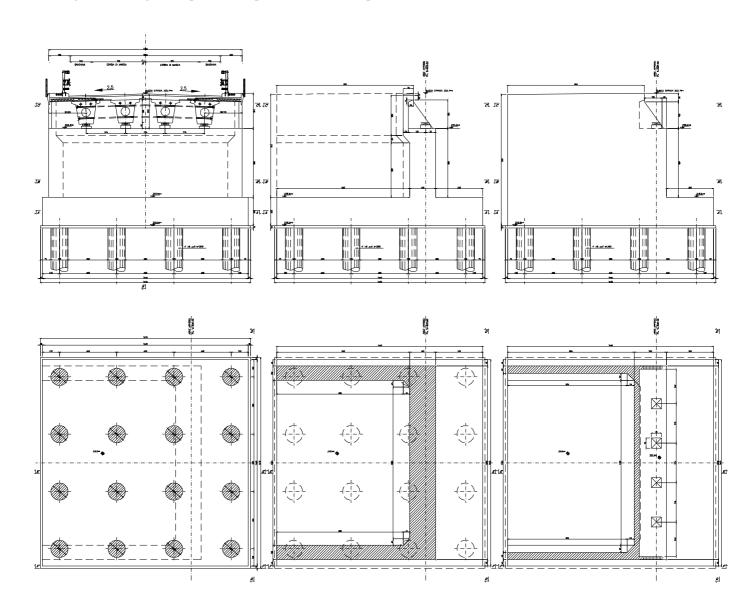


Figura 4-Spalla A;

D1-CL-VI06-001.doc pag. 8 di 137

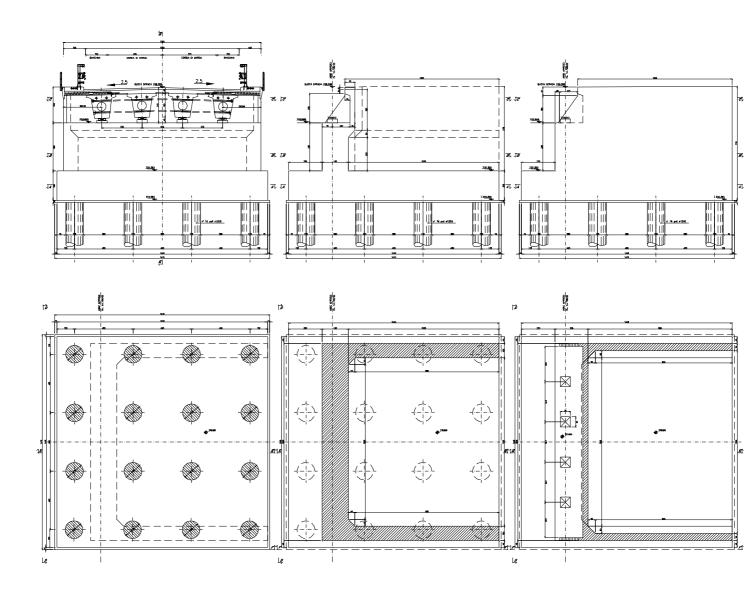


Figura 5-SpallaB;

Nel presente elaborato si procede alle verifiche delle strutture sopra descritte

D1-CL-VI06-001.doc pag. 9 di 137

2 Caratteristiche dei materiali

Calcestruzzo elevazioni pile e spalle: Rck 35 MPa.

Calcestruzzo fondazione: Rck 30 MPa.

Calcestruzzo pali: Rck 30 MPa.

Acciaio armatura ordinaria: Feb44k (controllato in stabilimento)

(fyk \geq 430 Mpa)

Le verifiche saranno condotte con il metodo agli S.L., nei riguardi degli stati limite di esercizio, di fessurazione e degli stati limite ultimi. Il calcolo delle caratteristiche delle sollecitazioni verrà effettuato con il calcolo elastico lineare senza ridistribuzioni.

2.1 Tensioni di calcolo

Allo **S.L.E**. le tensioni di compressione nel calcestruzzo, per ambienti moderatamente aggressivi, devono rispettare i seguenti limiti:

- per combinazioni di carico rara: $0,60 \cdot f_{ck}$
- per combinazioni di carico quasi permanente: 0,45·fck

mentre la massima tensione di trazione nell'armatura ordinaria, non deve superare:

- per combinazioni di carico rara: 0,70·f_{vk}
- per combinazioni di carico quasi permanente: $\sigma_{s \text{ amm}}$

Allo S.L.U. le resistenze di calcolo si valutano mediante le espressioni:

 $\begin{array}{lll} f_{cd}\!=f_{ck}\!/\!\gamma_c & con & \gamma_c\!=\!1,\!6 & per\ il\ calcestruzzo \\ f_{vd}\!=f_{vk}\!/\!\gamma_s & con & \gamma_s\!=\!1,\!15 & per\ l'acciaio \end{array}$

Le tensioni di calcolo agli stati limite relative ai materiali impiegati risultano le seguenti:

Calcestruzzo tipo Rck 35Mpa

 $\sigma_{ce} = 17.43 \text{ N/mm}^2$ per combinazione rara

 $\sigma_{ce} = 13.07 \text{ N/mm}^2$ per combinazione quasi-permanente

 $f_{cd} = 18.16 \text{ N/mm}^2$

Calcestruzzo tipo Rck 30Mpa

 $\sigma_{ce} = 14.94 \text{ N/mm}^2$ per combinazione rara

 $\sigma_{ce} = 11.205 \text{ N/mm}^2$ per combinazione quasi-permanente

 $f_{cd} = 15.56 \text{ N/mm}^2$

• Acciaio in barre FeB 44k

 $\sigma_{se} = 301.0 \text{ N/mm}^2$ per combinazione rara

 $\sigma_{se} = 255.0 \text{ N/mm}^2$ per combinazione quasi-permanente

 $f_{vd} = 374 \text{ N/mm}^2$

D1-CL-VI06-001.doc pag. 10 di 137

D1-CL-VI06-001.doc pag. 11 di 137

3 Normative di riferimento

- D.M. 16 gennaio 1996 Norme tecniche relative ai: "Criteri generali per la verifica di sicurezza delle costruzioni e dei carichi e sovraccarichi";
- Legge 5-1-1971 n° 1086: "Norme per la disciplina delle opere di conglomerato cementizio armato, normale e precompresso, ed a struttura metallica".
- DM 4 Maggio 1990: "Aggiornamento delle norme tecniche per la progettazione, esecuzione e il collaudo dei ponti stradali.
- D.M. del 9-1-1996 riguardante: "Norme tecniche per il calcolo, l'esecuzione e il collaudo delle strutture in cemento armato, normale e precompresso e per le strutture metalliche".
- Circolare del 4-7-1996 contenente le Istruzioni per l'applicazione delle "Norme tecniche relative ai criteri generali per la verifica di sicurezza delle costruzioni e dei carichi e sovraccarichi" di cui al D.M del 16-1-1996.
- Circolare del 15-10-1996 contenente le Istruzioni per l'applicazione delle "Norme tecniche per il calcolo, l'esecuzione e il collaudo delle strutture in cemento armato, normale e precompresso e per le strutture metalliche" di cui al D.M. del 9-1-1996.
- CNR 10024/86 "Analisi di strutture mediante elaboratore: impostazione e redazione della relazioni di calcolo".
- Nella redazione dei progetti e nelle verifiche strutturali si inoltre fatto riferimento alla normativa Europea per le strutture in calcestruzzo e misto come di seguito specificato:
- EC2 UNI-ENV-1992-1-1 Progettazione Strutture in Cemento Armato
- Normativa sismica bozza al 25/03/2003

D1-CL-VI06-001.doc pag. 12 di 137

4 Prescrizioni

4.1 Parametri del terreno

Si riportano i parametri geotecnici adottati per il dimensionamento delle opere ricavati dall'esito delle indagini eseguite in campagna ed in laboratorio.

Viadotto Acquarossa

Profondità da p.c.	Peso di volume	Coesione non drenata	formazione
(m)	γ. (KN/mc)	Cu (KN/mq)	
0,00 ÷2,00	18	0	Terreno di riporto
2,00 ÷ 10,00	18	0	Ghiaie in matrice limosa sabbiosa
10,00 ÷13,00	20	100	Argilla
13,00 ÷ 30,00	20	300	argilla

4.1.1 Parametri del rilevato

Si adotta un rilevato delle seguenti caratteristiche geotecniche:

 $\gamma=18 \text{ kN/m}^3$ (peso specifico del rilevato)

 $\phi=20^{\circ}$ (angolo d'attrito)

c'=0 (coesione)

4.1.2 Parametri del misto cementato

Per il dettaglio delle caratteristiche del misto cementato si rimanda alla Relazione Generale (rif. D1 RG 00 000 01 A.doc). Nella presente relazione, a vantaggio di sicurezza, si sono utilizzati i parametri del terreno del rilevato.

4.2 Spinta della terra

La spinta del terreno si determina secondo la teoria di Rankine, quindi date le caratteristiche del terreno del rilevato si ha:

 $\gamma=18 \text{ kN/m}^3$ (peso specifico del rilevato)

 $\phi=20^{\circ}$ (angolo d'attrito)

c'=0 (coesione)

ka= coefficiente di spinta attiva= 1-senφ/(1+senφ)=0.49

D1-CL-VI06-001.doc pag. 13 di 137

VI06 – Viadotto Acquarossa

St= spinta attiva del terreno= $\frac{1}{2}$ ka γ H²

D1-CL-VI06-001.doc pag. 14 di 137

5 Effetti globali Spalla A H=4.80 m

5.1 Analisi dei carichi

5.1.1 Azioni verticali e orizzontali agenti direttamente sulla spalla in condizioni statiche.

In condizione statiche le azioni agenti sulle spalle sono le seguenti:

Avendo utilizzato, per il calcolo delle sollecitazioni, una procedura agli elementi finiti sia per le pile, che per l'impalcato, i pesi propri strutturali sono stati valutati automaticamente e tenuti in conto per mezzo di tale procedura, fornendo nei dati di input le corrette dimensioni degli elementi strutturali e le relative densità di peso:

c.a.: $\gamma = 25 \text{ kN/m}^3.$ acc.: $\gamma = 78.5 \text{ kN/m}^3.$

	Azioni verticali pesi propri spalla									
γcls=	25	kN/mc	propri Spa	ılia						
7000		N(kN)	el(m)	et(m)	MI (kNm)	Mt (kNm)				
Paraghia		` ,	` ,	` ,	` ,	` ,				
Н	2,40									
В	13,50	283,50	-1,730	0,00	-490,46	0,00				
s	0,35									
Paramento										
Н	4,80									
В	13,50	2916,00	-2,900	0,00	-8456,40	0,00				
s	1,80									
Risvolto										
A	129,22	3230,50	2,550	0,00	8237,78	0,00				
S	1,00	,	•	,	,	,				
Zattera di fon	dazione									
А	207,36	10368,00	0,00	0,00	0,00	0,00				
S	2,00	,	,	,	,	,				
Terreno	,									
Н	11,50									
В	9,10	13374,27	2,550	0,00	34104,39	0,00				
s	7,10									
Carichi perma	-									
q	12,50									
H	11,50	1200,31	2,420	0,00	2904,76	0,00				
В	8,35	-	-	•	-	-				
subtotale	•	31372,58			36300,06	0,00				

D1-CL-VI06-001.doc pag. 15 di 137

et = ECCENTR. TRASVERSALE

el = ECCENTR. LONG.

MI = MOMENTO LONG.

Mt = MOMENTO TRASV.

Per quanto riguarda la spinta del terreno sulla spalla si hanno le seguenti carartteristiche del terreno di rilevato: Le caratteristiche del terreno da adottare sono le seguenti:

 $\gamma\!=\!$ 18 kN/mc $\varphi\!=\!$ 20 Ka= 0,490

quindi risultano le seguenti spinte:

		Hlong(kN)	el(m)	MI (kNm)
Spinta terreno				
Н В	9,10 13,50	-4933,02	3,03	-14963,49
Incr. Accidentali q	12,50	-752,90	4,55	-3425,71

D1-CL-VI06-001.doc pag. 16 di 137

5.1.2 Sovraspinte Sulla Spalla In Condizioni Sismiche.

Sismiche	$eta_{ m C}$	Sdh	$^{ riangle}$ ka		
	1	0,35	0,172		
Inerzie					
	H(kN)	el(m)	et(m)	MI (kNm)	Mt (kNm)
Paraghia	-99,23	7,950	7,950	-788,84	-788,84
Paramento	-1020,60	4,40	4,40	-4490,64	-4490,64
Risvolto	-1130,68	5,580	5,580	-6309,17	-6309,17
Zattera di fondazione	-3628,80	1,00	1,00	-3628,80	-3628,80
Terreno	-4680,99	5,580	5,58	-26119,95	-26119,95
Carichi permanenti	-420,11	9,10	9,10	-3823,00	-3823,00
Incr. di spinta	-1726,56	6,07	6,07	-10474,44	-10474,44
Incr. di spinta acc.	-263,52	4,55	4,55	-1199,00	-1199,00
subtotale	-12970,48			-56833,83	56833,83

D1-CL-VI06-001.doc pag. 17 di 137

5.1.3 Azioni provenienti dall'impalcato

	CAMPATA L = 30,00 m (app. FISSO)									
Azioni sta	ıtiche	q(KN/m)	L (m)	F (KN)	et (m)	el (m)	MI (KNm)	Mt (KNm)		
Verticali										
PP delle strutture	g1	186,30	15,00	2795	0,00	0,00	0,00	0,00		
Baggioli	g2		1,00	0,00	0,00	0,00	0,00	0,00		
	g2			0,00			0,00	0,00		
Perm. Portati	g2	56,75	15,00	851,3	0,00	0,00	0,00	0,00		
spinta terra	g3			0,00			0,00	0,00		
spinta idraulica	g3			0,00			0,00	0,00		
dist. di prog.	ε1			0,00			0,00	0,00		
ritiro	ε2			0,00			0,00	0,00		
∆T Impalcato	ε3			0,00			0,00	0,00		
scorrim. Viscosi	ε4			0,00			0,00	0,00		
cedim. Vincolari	ε5			0,00			0,00	0,00		

carichi mobili	q1a+q1b	600,00	1,00	768,00	3,57	0,00	0,00	2741,76
carichi mobili	0,5(q1a+q1b)	300,00	1,00	384,00	0,00	0,00	0,00	0,00
carichi mobili	0,35(q1a+q1b)	210,00	1,00	268,80	-3,57	0,00	0,00	-959,62
carichi mobili	q1e	6,00	15,00	115,20	6,23	0,00	0,00	717,70
carichi mobili	q1e	6,00	15,00	115,20	-6,23	0,00	0,00	-717,70
incr. Din	q2	1,28		0,00			0,00	0,00

Per i carichi mobili si riporta il seguente tabulato di calcolo:

Orizzontali Long.								
Frenatura	q3	273,00	1,00	273,00	0,00	2,39	652,47	0,00
dist. di prog.	ε1			0,00			0,00	0,00
ritiro	ε2			0,00			0,00	0,00
ΔT Impalcato	ε3			0,00			0,00	0,00
scorrim. Viscosi	ε4			0,00			0,00	0,00
cedim. Vincolari	ε 5			0,00			0,00	0,00
res. Parassite Orizzontali Trasv.	q7	1167,00	1,00	1167,00	0,00	0,40	466,80	0,00
dist. di prog.	ε1			0,00			0,00	0,00
ritiro	ε2			0,00			0,00	0,00
ΔT Impalcato	ε3			0,00			0,00	0,00
scorrim. Viscosi	ε4			0,00			0,00	0,00
cedim. Vincolari	ε 5			0,00			0,00	0,00
centrif.	q4	0,00	15,00	0,00	2,390	0,00	0,00	0,00
Vento	q5	5,00	15,00	75	2,495	0,00	0,00	187,13
Azioni sui parapetti	q8			0,00			0,00	0,00

Coefficienti sismici	Sv	Sh 7l	Sdv	Sdh
	0,00	0,35 1,00	0,00	0,35

D1-CL-VI06-001.doc pag. 18 di 137

Azioni sismiche Incr. carichi Verticali	q6							
PP		0,00	0,00	0,00	0,00	0,00	0,00	0,00
Perm. Portati		0,00	0,00	0,00	0,00	0,00	0,00	0,00
carichi mobili		0,00	0,00	0,00		0,00	0,00	0,00
Sisma Long.								
PP		65,21	60,00	3912,30	0,00	1,60	6259,68	0,00
Perm. Portati		19,86	60,00	1191,75	0,00	2,40	2860,20	0,00
carichi mobili		0,00	0,00	0,00	0,00	0,00	0,00	0,00
Sisma Trasv.								
PP		65,21	15,00	978,08	1,600	0,00	0,00	1564,92
Perm. Portati		19,86	15,00	297,94	2,40	0,00	0,00	715,05
carichi mobili		451,50	1,00	451,50	0,00	0,00	0,00	0,00

Per l'impalcato si prendono in considerazione le seguenti combinazioni di carico:

COMBINAZIONI	g1	g2	g3	ε1	ε2	εЗ	ε4	q1	q2	q3	q4	q5	q6	q7	q8	q9
Al	1,00	1,00	1,00	1,00	1,00	1,00	1,00	0,00	0,00	0,00	0,00	1,00	0,00	1,00	0,00	1,00
All	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	0,00	0,00	0,60	0,00	1,00	1,00	1,00
AIII	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	0,00	0,20	0,00	1,00	1,00	1,00
AIV	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	0,00	1,00	0,20	0,00	1,00	1,00	1,00
	ſ				1	1		1								
												2 12				
FI	1,00	1,00	1,00	1,00	1,00	1,00	1,00	0,00	0,00	0,00	0,00	0,40	0,00	0,00	0,00	0,00
FII	1,00	1,00	1,00	1,00	1,00	1,00	1,00	0,40	0,25	0,00	0,00	0,00	0,00	0,00	0,00	0,00
FIII	1,00	1,00	1,00	1,00	1,00	1,00	1,00	0,40	0,25	0,00	0,00	0,00	0,00	0,00	0,00	0,00

UI	1,50	1,50	1,50	1,20	1,20	1,20	1,20	0,00	0,00	0,00	0,00	1,50	1,5	50 1,	50
UII	1,50	1,50	1,50	1,20	1,20	1,20	1,20	1,50	1,50	0,00	0,00	0,90	1,5	50 1,	50
UIII	1,50	1,50	1,50	1,20	1,20	1,20	1,20	1,50	1,50	1,50	0,00	0,30	1,5	50 1,	50
UIV	1,50	1,50	1,50	1,20	1,20	1,20	1,20	1,50	1,50	0,00	1,50	0,30	1,5	50 1,	50

Per ogni combinazione di carico considerata si determinano le seguenti azioni sulla spalla A in esame :

		V(kN)	Hlong(kN)	Htrasv(kN)	Mlong(kNm)	Mtrasv(kNm)
In	A I	3645,75	1167,00	187,50	466,80	467,81
SLE	A II	5296,95	1167,00	112,50	466,80	2062,83
0,	A III	5296,95	1440,00	37,50	1119,27	1875,71
	A IV	5296,95	1167,00	37,50	466,80	1875,71
n di						
di ırazion	FI	3645,75	0,00	75,00	0,00	187,13
ıra	FII	4306,23	0,00	0,00	0,00	712,86
SLE fessur e	FIII	4306,23	0,00	0,00	0,00	712,86
SI fe fe						
	UI	5468,63	1750,50	281,25	700,20	701,72
nTS	UII	7945,43	1750,50	168,75	700,20	3094,25
1S	UIII	7945,43	2160,00	56,25	1678,91	2813,56
	UIV	7945,43	1750,50	56,25	700,20	2813,56
SLU	sisma	3645,75	5104,05	1276,01	9119,88	2279,97

D1-CL-VI06-001.doc pag. 19 di 137

D1-CL-VI06-001.doc pag. 20 di 137

COMBINAZIONI AZIONI SOMMITA' SPALLA

Risultanti sollecitazioni in sommità della spalla appoggio fisso

Le sollecitazioni flettenti longitudinali verranno tradotte in incrementi/riduzioni dello sforzo normale agente sugli appoggi secondo una distribuzione lineare delle risultanti (Delta N=Mlong/J*di)

	campata 1	campata 2	campata 3	campata 4	campata 5	campata 6	campata 7	campata 8	campata 9
passo	28,40	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
distanza dalla mezzeria	28,40	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
distanza quadratica	806,56	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
J		806,56							
W	28,40								

	N(kN)	Delta N	Nrisultante	Hlong(kN)	Htrasv(kN)	Mtrasv(kNm)
ΑI	3645,75	16,44	3662,19	1167,00	187,50	467,81
A II	5296,95	16,44	5313,39	1167,00	112,50	2062,83
A III	5296,95	39,41	5336,36	1440,00	37,50	1875,71
A IV	5296,95	16,44	5313,39	1167,00	37,50	1875,71
FI	3645,75	0,00	3645,75	0,00	75,00	187,13
FII	4306,23	0,00	4306,23	0,00	0,00	712,86
FIII	4306,23	0,00	4306,23	0,00	0,00	712,86
sisma	3645,75	321,12	3966,87	5104,05	1276,01	2279,97
UI	5468,63	24,65	5493,28	1750,50	281,25	701,72
UII	7945,43	24,65	7970,08	1750,50	168,75	3094,25
UIII	7945,43	59,12	8004,54	2160,00	56,25	2813,56
UIV	7945,43	24,65	7970,08	1750,50	56,25	2813,56

Le azioni provenienti dall'impalcato vengono quindi trasmesse ai pali di fondazione:

	Da ca	richi vertica	lli		
	N(kN)	el(m)	et(m)	MI (kNm)	Mt (kNm)
ΑI	3662,19	-3,10	0,00	-11352,78	467,81
A II	5313,39	-3,10	0,00	-16471,50	2062,83
A III	5336,36	-3,10	0,00	-16542,72	1875,71
A IV	5313,39	-3,10	0,00	-16471,50	1875,71
FI	3645,75	-3,10		-11301,83	187,13
FII	4306,23	-3,10	0,00	-13349,31	712,86
FIII	4306,23	-3,10	0,00	-13349,31	712,86
UI	5493,28	-3,10	0,00	-17029,17	701,72
UII	7970,08	-3,10	0,00	-24707,25	3094,25
UIII	8004,54	-3,10	0,00	-24814,08	2813,56
UIV	7970,08	-3,10	0,00	-24707,25	2813,56
sisma	3966,87	-3,10	0,00	-12297,30	2279,97

D1-CL-VI06-001.doc pag. 21 di 137

Altezza appoggio		40,00 c	em			
		Da carichi or	izzontali			
	Hlong(kN)	Hltrasv(kN)	el(m)	et(m)	MI (kNm)	Mt (kNm)
ΑI	-1167,00	187,50	7,20	7,20	-8402,40	1350,00
A II	-1167,00	112,50	7,20	7,20	-8402,40	810,00
A III	-1440,00	37,50	7,20	7,20	-10368,00	270,00
A IV	-1167,00	37,50	7,20	7,20	-8402,40	270,00
FI	0,00	75,00	7,20	7,20	0,00	540,00
FII	0,00	0,00	7,20	7,20	0,00	0,00
FIII	0,00	0,00	7,20	7,20	0,00	0,00
UI	1750 50	001.05	7.00	7.00	10000 00	2025 00
UII	-1750,50 -1750,50	281,25 168,75	7,20 7,20		-12603,60 -12603,60	2025,00 1215,00
UIII	-1750,50		7,20 7,20	•	-12603,60	405,00
UIV	-2160,00	56,25 56,25	7,20 7,20	,	-12603,60	405,00
OIV	-1750,50	30,23	7,20	7,20	-12003,00	403,00
sisma	-5104,05	1276,01	7,20	7,20	-36749,16	9187,29

D1-CL-VI06-001.doc pag. 22 di 137

N(kN)	Hlong(kN)	Htrasv(kN)	Mlong(kNm)	Mtrasv(kNm)
35034,77	-6852,92	187,50	-1844,31	1817,81
36685,97	-6852,92	112,50	-6963,03	2872,83
36708,94	-7125,92	37,50	-8999,85	2145,71
36685,97	-6852,92	37,50	-6963,03	2145,71
47567,37	-7960,29	75,00	13773,40	727,13
48227,85	-7960,29	0,00	11725,91	712,86
48227,85	-7960,29	0,00	11725,91	712,86
49414,90	-9710,79	281,25	-4557,55	2726,72
51891,70	-9710,79	168,75	-23537,45	4309,25
51926,16	-10120,29	56,25	-28640,17	3218,56
51891,70	-9710,79	56,25	-25584,94	3218,56
35339,46	-23760,45	0,00	-87969,42	0,00
35339,46	0,00	14246,49	0,00	68301,09
	35034,77 36685,97 36708,94 36685,97 47567,37 48227,85 48227,85 49414,90 51891,70 51926,16 51891,70	35034,77 -6852,92 36685,97 -6852,92 36708,94 -7125,92 36685,97 -6852,92 47567,37 -7960,29 48227,85 -7960,29 48227,85 -7960,29 49414,90 -9710,79 51891,70 -9710,79 51926,16 -10120,29 51891,70 -9710,79	35034,77 -6852,92 187,50 36685,97 -6852,92 112,50 36708,94 -7125,92 37,50 36685,97 -6852,92 37,50 47567,37 -7960,29 75,00 48227,85 -7960,29 0,00 48227,85 -7960,29 0,00 48227,85 -7960,29 56,25 51891,70 -9710,79 168,75 51926,16 -10120,29 56,25 51891,70 -9710,79 56,25 51891,70 -9710,79 56,25	35034,77 -6852,92 187,50 -1844,31 36685,97 -6852,92 112,50 -6963,03 36708,94 -7125,92 37,50 -8999,85 36685,97 -6852,92 37,50 -6963,03 47567,37 -7960,29 75,00 13773,40 48227,85 -7960,29 0,00 11725,91 48227,85 -7960,29 0,00 11725,91 49414,90 -9710,79 281,25 -4557,55 51891,70 -9710,79 168,75 -23537,45 51926,16 -10120,29 56,25 -28640,17 51891,70 -9710,79 56,25 -25584,94 35339,46 -23760,45 0,00 -87969,42

D1-CL-VI06-001.doc pag. 23 di 137

6 Effetti globali Spalla B - H = 3.30 m

7 Analisi dei carichi

7.1.1 Azioni verticali e orizzontali agenti direttamente sulla spalla in condizioni statiche.

In condizione statiche le azioni agenti sulle spalle sono le seguenti:

Avendo utilizzato, per il calcolo delle sollecitazioni, una procedura agli elementi finiti sia per le pile, che per l'impalcato, i pesi propri strutturali sono stati valutati automaticamente e tenuti in conto per mezzo di tale procedura, fornendo nei dati di input le corrette dimensioni degli elementi strutturali e le relative densità di peso:

c.a.: $\gamma = 25 \text{ kN/m}^3.$

acc.: $\gamma = 78.5 \text{ kN/m}^3$.

Azioni verticali pesi propri spalla

pesi propri spalia	N(kN)	el(m)	et(m)	MI (kNm)	Mt (kNm)
Paraghia	` ,	` ,	` ,	` ,	` ,
H 2,40					
B 13,50	283,50	-2,730	0,00	-773,96	0,00
s 0,35					
Paramento					
H 3,30					
B 13,50	2004,75	-3,900	0,00	-7818,53	0,00
s 1,80					
Risvolto					
A 113,12	2828,00	2,050	0,00	5797,40	0,00
s 1,00	,	,	-,	, -	-,
Zattera di fondazione					
A 207,36	10368,00	0,00	0,00	0,00	0,00
s 2,00		0,00	0,00	0,00	3,00
Terreno					
H 11,50					
B 10,10	11707,92	2,050	0,00	24001,24	0,00
s 5,60					
Carichi permanenti					
q 12,50					
H 11,50	1487,81	1,920	0,00	2856,60	0,00
B 10,35					
subtotale	28679,98			24062,76	0,00

et = ECCENTR. TRASVERSALE

el = ECCENTR. LONG.

MI = MOMENTO LONG.

Mt = MOMENTO TRASV.

D1-CL-VI06-001.doc pag. 24 di 137

Per quanto riguarda la spinta del terreno sulla spalla si hanno le seguenti carartteristiche del terreno di rilevato: Le caratteristiche del terreno da adottare sono le seguenti:

$$\gamma=$$
 18 kN/mc $\varphi=$ 20 Ka= 1-sen $_0/1$ +sen $_0=$ 0,490 quindi risultano le seguenti spinte:

		Hlong(kN)	el(m)	MI (kNm)
Spinta terreno				
Н	7,60	-3440,78	2.52	-8716,65
В	7,60 13,50	-3440,76	2,33	-0710,00
Incr. Accidental	i			
q	12,50	-628,80	3,80	-2389,43

7.1.2 Sovraspinte sulla spalla in condizioni sismiche.

Sismiche	βC	Sdh	∆ka		
	1	0,35	0,172		
Inerzie					
	H(kN)	el(m)	et(m)	MI (kNm)	Mt (kNm)
Paraghia	-99,23	6,450	6,450	-640,00	-640,00
Paramento	-701,66	3,65	3,65	-2561,07	-2561,07
Risvolto	-989,80	4,800	4,800	-4751,04	-4751,04
Zattera di fondazione	-3628,80	1,00	1,00	-3628,80	-3628,80
Terreno	-4097,77	4,830	4,83	-19792,24	-19792,24
Carichi permanenti	-520,73	7,60	7,60	-3957,58	-3957,58
Incr. di spinta	-1204,27	5,07	5,07	-6101,65	-6101,65
Incr. di spinta acc.	-220,08	3,80	3,80	-836,30	-836,30
subtotale	-11242,27			-42268,68	42268,68

D1-CL-VI06-001.doc pag. 25 di 137

		CAMPATA L	= 30,00 m (ap	p. FISSO)				
Azioni sta	atiche	q(KN/m)	L (m)	F (KN)	et (m)	el (m)	MI (KNm)	Mt (KNm)
Verticali								
PP delle strutture	g1	186,30	15,00	2795	0,00	0,00	0,00	0,00
Baggioli	g2		1,00	0,00	0,00	0,00	0,00	0,00
	g2			0,00			0,00	0,00
Perm. Portati	g2	56,75	15,00	851,3	0,00	0,00	0,00	0,00
spinta terra	g3			0,00			0,00	0,00
spinta idraulica	g3			0,00			0,00	0,00
dist. di prog.	ε1			0,00			0,00	0,00
ritiro	ε2			0,00			0,00	0,00
Δ1 Impalcato	ε3			0,00			0,00	0,00
scorrim. Viscosi	ε4			0,00			0,00	0,00
cedim. Vincolari	ε 5			0,00			0,00	0,00

7.1.3 Azioni provenienti dall'impalcato

Per i carichi mobili si riporta il seguente tabulato di calcolo:

carichi mobili	q1a+q1b	600,00	1,00	768,00	3,57	0,00	0,00	2741,76
carichi mobili	0,5(q1a+q1b)	300,00	1,00	384,00	0,00	0,00	0,00	0,00
carichi mobili	0,35(q1a+q1b)	210,00	1,00	268,80	-3,57	0,00	0,00	-959,62
carichi mobili	q1e	6,00	15,00	115,20	6,23	0,00	0,00	717,70
carichi mobili	q1e	6,00	15,00	115,20	-6,23	0,00	0,00	-717,70
incr. Din	q2	1,28		0,00			0,00	0,00

Orizzontali Long.								
Frenatura	q3	273,00	1,00	273,00	0,00	2,39	652,47	0,00
dist. di prog.	ε1			0,00			0,00	0,00
ritiro	ε 2			0,00			0,00	0,00
ΔT Impalcato	ε3			0,00			0,00	0,00
scorrim. Viscosi	ε4			0,00			0,00	0,00
cedim. Vincolari	ε 5			0,00			0,00	0,00
res. Parassite	q7	1167.00	1,00	1167,00	0.00	0.40	466.80	0.00

Orizzontali Trasv.								
dist. di prog.	ε1			0,00			0,00	0,00
ritiro	ε2			0,00			0,00	0,00
ΔT Impalcato	ε3			0,00			0,00	0,00
scorrim. Viscosi	ε4			0,00			0,00	0,00
cedim. Vincolari	ε 5			0,00			0,00	0,00
centrif.	q4	0,00	15,00	0,00	2,390	0,00	0,00	0,00
Vento	q5	5,00	15,00	75,00	2,495	0,00	0,00	187,13
Azioni sui parapetti	q8			0,00			0,00	0,00

D1-CL-VI06-001.doc pag. 26 di 137

D1-CL-VI06-001.doc pag. 27 di 137

Coefficienti sismici	Sv	Sh γ l	Sdv	Sdh
	0,00	0,35 1,00	0,00	0,35

Azioni sismiche	q6							
Incr. carichi Verticali								
PP		0,00	0,00	0,00	0,00	0,00	0,00	0,00
Perm. Portati		0,00	0,00	0,00	0,00	0,00	0,00	0,00
carichi mobili		0,00	0,00	0,00		0,00	0,00	0,00
Sisma Long.								
PP		65,21	60,00	3912,30	0,00	1,60	6259,68	0,00
Perm. Portati		19,86	60,00	1191,75	0,00	2,40	2860,20	0,00
carichi mobili		0,00	0,00	0,00	0,00	0,00	0,00	0,00
Sisma Trasv.								
PP		65,21	15,00	978,08	1,600	0,00	0,00	1564,92
Perm. Portati		19,86	15,00	297,94	2,40	0,00	0,00	715,05
carichi mobili		451,50	1,00	451,50	0,00	0,00	0,00	0,00

Per l'impalcato si prendono in considerazione le seguenti combinazioni di carico:

													_			
COMBINAZIONI	g1	g2	g3	ε1	ε2	ε3	ε4	q1	q2	q3	q4	q5	q6	q7	q8	q9
Al	1,00	1,00	1,00	1,00	1,00	1,00	1,00	0,00	0,00	0,00	0,00	1,00	0,00	1,00	0,00	1,00
All	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	0,00	0,00	0,60	0,00	1,00	1,00	1,00
AIII	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	0,00	0,20	0,00	1,00	1,00	1,00
AIV	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	0,00	1,00	0,20	0,00	1,00	1,00	1,00
			1													=
Fl	1,00	1,00	1,00	1,00	1,00	1,00	1,00	0,00	0,00	0,00	0,00	0,40	0,00	0,00	0,00	0,00
FII	1,00	1,00	1,00	1,00	1,00	1,00	1,00	0,40	0,25	0,00	0,00	0,00	0,00	0,00	0,00	0,00
FIII	1,00	1,00	1,00	1,00	1,00	1,00	1,00	0,40	0,25	0,00	0,00	0,00	0,00	0,00	0,00	0,00
,																
UI	1,50	1,50	1,50	1,20	1,20	1	,20	1,20 0	,00 (0,00	0,00	0,00	1,50		1,50	1,50
UII	1,50	1,50	1,50	1,20	1,20	1	,20	1,20 1	,50 1	,50	0,00	0,00	0,90		1,50	1,50
UIII	1,50	1,50	1,50	1,20	1,20	1	,20	1,20 1	,50 1	,50	1,50	0,00	0,30		1,50	1,50
UIV	1,50	1,50	1,50	1,20	1,20	1	,20	1,20 1	,50 1	,50	0,00	1,50	0,30		1,50	1,50

Per ogni combinazione di carico considerata si determinano le seguenti azioni sulla spalla B in esame:

D1-CL-VI06-001.doc pag. 28 di 137

	Spalla con appoggio fisso									
	V(kN)	Hlong(kN)	Htrasv(kN)	Mlong(kNm)	Mtrasv(kNm)					
A I	3645,75	1167,00	187,50	466,80	467,81					
A II	5296,95	1167,00	112,50	466,80	2062,83					
A III	5296,95	1440,00	37,50	1119,27	1875,71					
A IV	5296,95	1167,00	37,50	466,80	1875,71					

D1-CL-VI06-001.doc pag. 29 di 137

di n						
azio	FI	3645,75	0,00	75,00	0,00	187,13
I ►	FII	4306,23	0,00	0,00	0,00	712,86
SLE fessu e	FIII	4306,23	0,00	0,00	0,00	712,86

	UI	5468,63	1750,50	281,25	700,20	701,72
SLU	UII	7945,43	1750,50	168,75	700,20	3094,25
1S	UIII	7945,43	2160,00	56,25	1678,91	2813,56
	UIV	7945,43	1750,50	56,25	700,20	2813,56

sisma	3645,75	5104,05	1276,01	9119,88	2279,97

COMBINAZIONI AZIONI SOMMITA' SPALLA

Fissa

impalcato a doppia corsia e=0,00

	N(kN)	Hlong(kN)	Htrasv(kN)	Mlong(kNm)	Mtrasv(kNm)
ΑI	3645,75	1167,00	187,50	466,80	467,81
A II	5296,95	1167,00	112,50	466,80	2062,83
A III	5296,95	1440,00	37,50	1119,27	1875,71
A IV	5296,95	1167,00	37,50	466,80	1875,71
	-				-
FI	3645,75	0,00	75,00	0,00	0 187,13
FII	4306,23	0,00	0,00	0,00	712,86
FIII	4306,23	0,00	0,00	0,00	712,86
UI	5468,63	1750,50	281,25	5 700,20	701,72
UII	7945,43	1750,50	168,75	700,20	3094,25
UIII	7945,43	2160,00	56,25	1678,9	1 2813,56
UIV	7945,43	1750,50	56,25	5 700,20	2813,56

D1-CL-VI06-001.doc pag. 30 di 137

Le sollecitazioni flettenti longitudinali verranno tradotte in incrementi/riduzioni dello sforzo normale agente sui 2 appoggi secondo una distribuzione lineare delle risultanti (Delta N=Mlong/J*di)

	campata 1	campata 2	campata 3	campata 4	campata 5	campata 6	campata 7	campata 8	campata 9
passo	28,40	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
distanza dalla mezzeria	28,40	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
distanza quadratica	806,56	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
J		806,56							
W	28,40								

D1-CL-VI06-001.doc pag. 31 di 137

	N(kN)	Delta N	Nrisultante	Hlong(kN)	Htrasv(kN)	Mtrasv(kNm
ΑI	3645,75	16,44	3662,19	1167,00	187,50	467,8
A II	5296,95	16,44	5313,39	1167,00	112,50	2062,8
A III	5296,95	39,41	5336,36	1440,00	37,50	1875,7
A IV	5296,95	16,44	5313,39	1167,00	37,50	1875,7
FI	3645,75	0,00	3645,75	0,00	75,00	187,13
FII	4306,23	0,00	4306,23	0,00	0,00	712,8
FIII	4306,23	0,00	4306,23	0,00	0,00	712,8
UI	5468,63	24,65	5493,28	1750,50	281,25	701,7
UII	7945,43	24,65	7970,08	1750,50	168,75	3094,2
UIII	7945,43	59,12	8004,54	2160,00	56,25	2813,5
UIV	7945,43	24,65	7970,08	1750,50	56,25	2813,5

D1-CL-VI06-001.doc pag. 32 di 137

	Da ca	arichi vertica	ali		
	N(kN)	el(m)	et(m)	MI (kNm)	Mt (kNm)
ΑI	3662,19	-4,10	0,00	-15014,97	467,81
A II	5313,39	-4,10	0,00	-21784,89	2062,83
A III	5336,36	-4,10	0,00	-21879,08	1875,71
A IV	5313,39	-4,10	0,00	-21784,89	1875,71

FI	3645,75	-4,10	0,00 -14947,58	187,13
FII	4306,23	-4,10	0,00 -17655,54	712,86
FIII	4306,23	-4,10	0,00 -17655,54	712,86

UI	5493,28	-4,10	0,00 -22522,45	701,72
UI UII UIII UIV	7970,08	-4,10	0,00 -32677,33	3094,25
UIII	8004,54	-4,10	0,00 -32818,62	2813,56
UIV	7970,08	-4,10	0,00 -32677,33	2813,56

sisma	3966,87	-4,10	0,00 -16264,18	2279,97

Altezza appoggio	40,00 cm						
		Da carichi or	rizzontali				
	Hlong(kN)	Hitrasv(kN)	el(m)	et(m)	MI (kNm)	Mt (kNm)	
ΑI	-1167,00	187,50	5,70	5,70	-6651,90	1068,75	
A II	-1167,00	112,50	5,70	5,70	-6651,90	641,25	
A III	-1440,00	37,50	5,70	5,70	-8208,00	213,75	
A IV	-1167,00	37,50	5,70	5,70	-6651,90	213,75	

FI	0,00	75,00	5,70	5,70	0,00	427,50
FII	0,00	0,00	5,70	5,70	0,00	0,00
FIII	0,00	0,00	5,70	5,70	0,00	0,00

UI	-1750,50	281,25	5,70	5,70 -9977,85 16	03,13
UII	-1750,50	168,75	5,70	5,70 -9977,85 9	61,88
UII UIII UIV	-2160,00	56,25	5,70	5,70 -12312,00 3	20,63
UIV	-1750,50	56,25	5,70	5,70 -9977,85 3	20,63

D1-CL-VI06-001.doc pag. 33 di 137

sisma	-5104,05	1276,01	5,70	5,70 -29093,09	7273,27

D1-CL-VI06-001.doc pag. 34 di 137

Azioni alla base della spalla					
	N(kN)	Hlong(kN)	Htrasv(kN)	Mlong(kNm)	Mtrasv(kNm)
ΑΙ	32342,17	-5236,58	187,50	-8710,19	1536,56
A II	33993,37	-5236,58	112,50	-15480,11	2704,08
A III	34016,34	-5509,58	37,50	-17130,40	2089,46
A IV	33993,37	-5236,58	37,50	-15480,11	2089,46

FI	43797,73	-5697,41	75,00	3191,78	614,63
FII	44458,21	-5697,41	0,00	483,81	712,86
FIII	44458,21	-5697,41	0,00	483,81	712,86

UI	45645,26	-7447,91	281,25	-14360,95	2304,84
UII	48122,06	-7447,91	168,75	-39463,40	4056,12
UIII	48156,52	-7857,41	56,25	-44646,81	3134,18
UIV	48122,06	-7447,91	56,25	-42171,37	3134,18

SISMA x	32646,86	-20415,90	0,00	-74669,26	0,00
SISMA y	32646,86	0,00	12518,28	0,00	51821,92

D1-CL-VI06-001.doc pag. 35 di 137

8 Effetti globali Pila P2 Mobile

8.1 Analisi dei carichi

8.1.1 Azioni verticali e orizzontali agenti direttamente sulla pila in condizioni statiche.

In condizione statiche le azioni agenti sulle pile sono le seguenti:

Avendo utilizzato, per il calcolo delle sollecitazioni, una procedura agli elementi finiti sia per le pile, che per l'impalcato, i pesi propri strutturali sono stati valutati automaticamente e tenuti in conto per mezzo di tale procedura, fornendo nei dati di input le corrette dimensioni degli elementi strutturali e le relative densità di peso:

c.a.: $\gamma = 25 \text{ kN/m}^3.$ acc.: $\gamma = 78.5 \text{ kN/m}^3.$

Azioni verticali pesi propri spalla

pesi propri spalia		N(kN)	el(m)	et(m)	MI (kNm)	Mt (kNm)
pulvino		re(Kire)	Ci(iii)	Ot(III)	iiii (Kitiii)	wit (Kitiii)
А	3,03	758,00	0,000	0,00	0,00	0,00
S	10,00	730,00	0,000	0,00	0,00	0,00
disacc.						
А	2,25	561,25	0,000	0,00	0,00	0,00
s	5,00	001,20	0,000	0,00	0,00	0,00
fusto						
Α	5,59	426,24	0,000	0,00	0,00	0,00
s	3,05	,	0,000	0,00	0,00	0,00
Zattera di fondazion	е					
А	90,00	4050,00	0,00	0,00	0,00	0,00
s	1,80	,	,	,	,	,
Terreno						
H	0,00					
В	0,00	0,00	0,000	0,00	0,00	0,00
S	0,00					
Carichi permanenti						
q	0,00					
Н	0,00	0,00	0,000	0,00	0,00	0,00
В	0,00					
subtotale		5795,49			0,00	0,00

D1-CL-VI06-001.doc pag. 36 di 137

et = ECCENTR. TRASVERSALE

el = ECCENTR. LONG.

MI = MOMENTO LONG.

Mt = MOMENTO TRASV.

D1-CL-VI06-001.doc pag. 37 di 137

8.1.2 Azioni pila in condizioni sismiche

Sismiche	βC		Sdh	Sdt		
	1		0,21	0,25		
Inerzie						
	Hlong(kN)	Hltrasv(kN)	el(m)	et(m)	MI (kNm)	Mt (kNm)
pulvino	-159,18	-189,50	11,470	11,470	-1825,79	-2173,57
disacc.	-117,86	-140,31	7,35	7,35	-866,29	-1031,30
fusto	-89,51	-106,56	3,325	3,325	-297,62	-354,31
Zattera di fondazione	-850,50	-1012,50	0,90	0,90	-765,45	-911,25
Terreno	0,00	0,00	0,000	0,00	0,00	0,00
Carichi permanenti	0,00	0,00	0,00	0,00	0,00	0,00
Incr. di spinta	0,00	0,00	0,00	0,00	0,00	0,00
Incr. di spinta acc.	0,00	0,00	0,00	0,00	0,00	0,00
subtotale	-1217,05	-1448,87			-3755,15	-4470,42

D1-CL-VI06-001.doc pag. 38 di 137

		CAMPATA L	= 30,00 m (ap	p. FISSO)				
Azioni sta	ntiche	q(KN/m)	L (m)	F (KN)	et (m)	el (m)	MI (KNm)	Mt (KNm)
Verticali								
PP delle strutture	g1	186,30	30,00	5589	0,00	0,00	0,00	0,00
Baggioli	g2		1,00	0,00	0,00	0,00	0,00	0,00
	g2			0,00			0,00	0,00
Perm. Portati	g2	56,75	30,00	1702,5	0,00	0,00	0,00	0,00
spinta terra	g3			0,00			0,00	0,00
spinta idraulica	g3			0,00			0,00	0,00
dist. di prog.	ε1			0,00			0,00	0,00
ritiro	ε2			0,00			0,00	0,00
∆1 Impalcato	ε3			0,00			0,00	0,00
scorrim. Viscosi	ε4			0,00			0,00	0,00
cedim. Vincolari	ε 5			0,00			0,00	0,00

8.1.3 Azioni provenienti dall'impalcato

Per i carichi mobili si riporta il seguente tabulato di calcolo:

carichi mobili	q1a+q1b	600,00	1,00	768,00	3,57	0,00	0,00	2741,76
carichi mobili	0,5(q1a+q1b)	300,00	1,00	384,00	0,00	0,00	0,00	0,00
carichi mobili	0,35(q1a+q1b)	210,00	1,00	268,80	-3,57	0,00	0,00	-959,62
carichi mobili	q1e	6,00	30,00	230,40	6,23	0,00	0,00	1435,39
carichi mobili	q1e	6,00	30,00	230,40	-6,23	0,00	0,00	-1435,39
incr. Din	q2	1,28		0,00			0,00	0,00

Orizzontali Long.								
Frenatura	q3	0,00	1,00	0,00	0,00	2,05	0,00	0,00
dist. di prog.	ε1			0,00			0,00	0,00
ritiro	ε2			0,00			0,00	0,00
ΔT Impalcato	ϵ 3			0,00			0,00	0,00
scorrim. Viscosi	ε4			0,00			0,00	0,00
cedim. Vincolari	ε 5			0,00			0,00	0,00
res. Parassite	q7	0,00	1,00	0,00	0,00	0,40	0,00	0,00

D1-CL-VI06-001.doc pag. 39 di 137

Orizzontali Trasv.								
dist. di prog.	ε1			0,00			0,00	0,00
ritiro	ε 2			0,00			0,00	0,00
∆T Impalcato	ε 3			0,00			0,00	0,00
scorrim. Viscosi	ε4			0,00			0,00	0,00
cedim. Vincolari	ε 5			0,00			0,00	0,00
centrif.	q4	0,00	30,00	0,00	3,55	0,00	0,00	0,00
Vento	q5	5,00	30,00	150,00	2,525	0,00	0,00	378,75
Azioni sui parapetti	q8		·	0,00			0,00	0,00

D1-CL-VI06-001.doc pag. 40 di 137

Coefficienti sismici			St	Sh	γ I	Sdt	Sdh	
			0,25	0,21	1,00	0,25	0,21	
Azioni sismiche	q6							
Incr. carichi Verticali								
PP		0,00	0,00	0,00	0,00	0,00	0,00	0,00
Perm. Portati		0,00	0,00	0,00	0,00	0,00	0,00	0,00
carichi mobili		0,00	0,00	0,00	0,00	0,00	0,00	0,00
Sisma Long.								
PP		0,00	30,00	0,00	0,00	1,025	0,00	0,00
Perm. Portati		0,00	30,00	0,00	0,00	2,15	0,00	0,00
carichi mobili		0,00	1,00	0,00	0,00	3,55	0,00	0,00
Sisma Trasv.								
PP		46,58	30.00	1397,25	1,025	0,00	0.00	1432,18
Perm. Portati		14,19	30,00	425,63	2,15	0,00	0,00	915,09
carichi mobili		0,00	1,00	0,00	3,55	0,00	0,00	0,00

Per l'impalcato si prendono in considerazione le seguenti combinazioni di carico:

COMBINAZIONI	g1	g2	g3	ε1	ε2	ε3	ε4	q1	q2	q3	q4	q5	q6	q7	q8	q9
Al	1,00	1,00	1,00	1,00	1,00	1,00	1,00	0,00	0,00	0,00	0,00	1,00	0,00	1,00	0,00	1,00
All	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	0,00	0,00	0,60	0,00	1,00	1,00	1,00
AIII	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	0,00	0,20	0,00	1,00	1,00	1,00
AIV	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	0,00	1,00	0,20	0,00	1,00	1,00	1,00
								_								
FI	1,00	1,00	1,00	1,00	1,00	1,00		4,44	0,00	0,00		0,40		0,00	0,00	0,00
FII	1,00	1,00	1,00	1,00	1,00	1,00	1,00	0,40	0,25	0,00	0,00	0,00	0,00	0,00	0,00	0,00
FIII	1,00	1,00	1,00	1,00	1,00	1,00	1,00	0,40	0,25	0,00	0,00	0,00	0,00	0,00	0,00	0,00
UI	1.50	1.50	1.50	1.20	1.20	Τ.	1.20	1.20	0.00	0.00	0.00	0.00	1.50		1.50	1,50
UII	1.50	1,50	1.50	1.20	1.20	-	1.20	1.20	1.50	- /	- /	- /	0.90		1,50	1,50
UIII	1,50	1,50	1,50	1,20	1,20	- 1	1,20	1,20	1,50	1,50	_	_	0,30		1,50	1,50
UIV	1,50	1,50	1,50	1,20	1,20		1,20	1,20	1,50	1,50	0,00	1,50	0,30		1,50	1,50

D1-CL-VI06-001.doc pag. 41 di 137

Per ogni combinazione di carico considerata si determinano le seguenti azioni sulla pila 3 in esame:

		Pila con app	oggio mobile)	
	V(kN)	Hlong(kN)	Htrasv(kN)	Mlong(kNm)	Mtrasv(kNm)
AI	7291,50	0,00	150,00	0,00	378,75
A II	9173,10	0,00	90,00	0,00	2009,39
A III	9173,10	0,00	30,00	0,00	1857,89
A IV	9173,10	0,00	30,00	0,00	1857,89

di n						
azio	FI	7291,50	0,00	60,00	0,00	151,50
I = =	FII	8044,14	0,00	0,00	0,00	712,86
SLE fessu e	FIII	8044,14	0,00	0,00	0,00	712,86

	UI	10937,25	0,00	225,00	0,00	568,13
nTS	UII	13759,65	0,00	135,00	0,00	3014,09
18	UIII	13759,65	0,00	45,00	0,00	2786,84
	UIV	13759,65	0,00	45,00	0,00	2786,84

sisma	7291,50	0,00	1822,88	0,00	2347,28

COMBINAZIONI AZIONI SOMMITA' PILA

Fissa

impalcato a doppia corsia e=0,00

	N(kN)	Hlong(kN)	Htrasv(kN)	Mlong(kNm)	Mtrasv(kNm)
ΑI	7291,50	0,00	150,00	0,00	378,75
A II	9173,10	0,00	90,00	0,00	2009,39
A III	9173,10	0,00	30,00	0,00	1857,89
A IV	9173,10	0,00	30,00	0,00	1857,89

D1-CL-VI06-001.doc pag. 42 di 137

FI	7291,50	0,00	60,00	0,00	151,50
FII	8044,14	0,00	0,00	0,00	712,86
FIII	8044,14	0,00	0,00	0,00	712,86

UII	13759,65	0,00	135,00	0,00	3014,09
UIII	13759,65	0,00	45,00	0,00	2786,84
UIV	13759,65	0,00	45,00	0,00	2786,84
sisma	7291.50	0.00	1822.88	0.00	2347,28

D1-CL-VI06-001.doc pag. 43 di 137

Le sollecitazioni flettenti longitudinali verranno tradotte in incrementi/riduzioni dello sforzo normale agente sui 2 appoggi secondo una distribuzione lineare delle risultanti (Delta N=Mlong/J*di)

	campata 1	campata 2	campata 3	campata 4	campata 5	campata 6	campata 7	campata 8	campata 9
passo	28,40	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
distanza dalla mezzeria	28,40	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
distanza quadratica	806,56	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
J		806,56							
W	28,40	#DIV/0!							

COMBINAZIONI AZIONI SOMMITA' PILA

Risultanti sollecitazioni in sommità della pila

	N(kN)	Delta N	Nrisultante	Hlong(kN)	Htrasv(kN)	Mtrasv(kNm)
ΑI	7291,50	0,00	7291,50	0,00	150,00	378,75
A II	9173,10	0,00	9173,10	0,00	90,00	2009,39
A III	9173,10	0,00	9173,10	0,00	30,00	1857,89
A IV	9173,10	0,00	9173,10	0,00	30,00	1857,89
(F)	7004 50	0.00	7001 50	0.00	60.00	151 50
	•					
FI	7291,50	0,00	7291,50	0,00	60,00	151,50
FI FII FIII	7291,50 8044,14 8044,14	0,00 0,00 0,00	7291,50 8044,14 8044,14	0,00 0,00 0,00	60,00 0,00 0,00	712,86

UI	10937,25	0,00	10937,25	0,00	225,00	568,13
UII	13759,65	0,00	13759,65	0,00	135,00	3014,09
UIII	13759,65	0,00	13759,65	0,00	45,00	2786,84
UIV	13759,65	0,00	13759,65	0,00	45,00	2786,84

sisma	7291,50	0,00	7291,50	0,00	1822,88	2347,28

D1-CL-VI06-001.doc pag. 44 di 137

Da carichi verticali							
N(kN) el(m) et(m) MI (kNm) Mt (kN							
ΑI	7291,50	0,00	0,00	0,00	378,75		
A I A II	9173,10	0,00	0,00	0,00	2009,39		
A III	9173,10	0,00	0,00	0,00	1857,89		
A IV	9173,10	0,00	0,00	0,00	1857,89		

FI	7291,50	0,00	0,00	0,00	151,50
FII FIII	8044,14	0,00	0,00	0,00	712,86
FIII	8044,14	0,00	0,00	0,00	712,86

UI UII	10937,25	0,00	0,00	0,00	568,13
	13759,65	0,00	0,00	0,00	3014,09
UIII	13759,65	0,00	0,00	0,00	2786,84
UIII UIV	13759,65	0,00	0,00	0,00	2786,84

sisma	7291,50	0,00	0,00	0,00 2347,28

D1-CL-VI06-001.doc pag. 45 di 137

Altezza appoggio		40,00 cm				
		Da carichi or	rizzontali			
	Hlong(kN)	Hltrasv(kN)	el(m)	et(m)	MI (kNm)	Mt (kNm)
ΑI	0,00	150,00	14,90	14,90	0,00	2235,00
A II	0,00	90,00	14,90	14,90	0,00	1341,00
A III	0,00	30,00	14,90	14,90	0,00	447,00
A IV	0,00	30,00	14,90	14,90	0,00	447,00

FI	0,00	60,00	14,90	14,90	0,00	894,00
FII	0,00	0,00	14,90	14,90	0,00	0,00
FIII	0,00	0,00	14,90	14,90	0,00	0,00

UI	0,00	225,00	14,90	14,90	0,00	3352,50
UII	0,00	135,00	14,90	14,90	0,00	2011,50
UIII	0,00	45,00	14,90	14,90	0,00	670,50
UIV	0,00	45,00	14,90	14,90	0,00	670,50

sisma	0,00	1822,88	11,45	11,45	0,00 20871,92

D1-CL-VI06-001.doc pag. 46 di 137

9 Determinazione delle sollecitazioni e verifiche

9.1.1 Riepilogo delle sollecitazioni all'intradosso fondazioni

Nelle seguenti tabelle si riportano i carichi alla base delle fondazioni per i tre elementi in esame, Spalla fissa A, Spalla fissa B, Pila Mobile P2.

SPALLA A H=4.80m

Azioni alla base della spalla					
	N(kN)	Hlong(kN)	Htrasv(kN)	Mlong(kNm)	Mtrasv(kNm)
ΑΙ	35034,77	-6852,92	187,50	-1844,31	1817,81
A II	36685,97	-6852,92	112,50	-6963,03	2872,83
A III	36708,94	-7125,92	37,50	-8999,85	2145,71
A IV	36685,97	-6852,92	37,50	-6963,03	2145,71

FI	47567,37	-7960,29	75,00	13773,40	727,13
FII	48227,85	-7960,29	0,00	11725,91	712,86
FIII	48227,85	-7960,29	0,00	11725,91	712,86

UI	49414,90	-9710,79	281,25	-4557,55	2726,72
UII	51891,70	-9710,79	168,75	-23537,45	4309,25
UIII	51926,16	-10120,29	56,25	-28640,17	3218,56
UIV	51891,70	-9710,79	56,25	-25584,94	3218,56

SISMA x	35339,46	-23760,45	0,00	-87969,42	0,00
SISMA y	35339,46	0,00	14246,49	0,00	68301,09

D1-CL-VI06-001.doc pag. 47 di 137

Azioni alla base della spalla H	l=3,3m				
	N(kN)	Hlong(kN)	Htrasv(kN)	Mlong(kNm)	Mtrasv(kNm)
ΑI	32342,17	-5236,58	187,50	-8710,19	1536,56
A II	33993,37	-5236,58	112,50	-15480,11	2704,08
A III	34016,34	-5509,58	37,50	-17130,40	2089,46
A IV	33993,37	-5236,58	37,50	-15480,11	2089,46

FI	43797,73	-5697,41	75,00	3191,78	614,63
FII	44458,21	-5697,41	0,00	483,81	712,86
FIII	44458,21	-5697,41	0,00	483,81	712,86

UI	45645,26	-7447,91	281,25	-14360,95	2304,84
UII	48122,06	-7447,91	168,75	-39463,40	4056,12
UIII	48156,52	-7857,41	56,25	-44646,81	3134,18
UIV	48122,06	-7447,91	56,25	-42171,37	3134,18

SISMA x	32646,86	-20415,90	0,00	-74669,26	0,00
SISMA y	32646,86	0,00	12518,28	0,00	51821,92

D1-CL-VI06-001.doc pag. 48 di 137

Azioni alla base della pila					
	N(kN)	Hlong(kN)	Htrasv(kN)	Mlong(kNm)	Mtrasv(kNm)
ΑΙ	13086,99	0,00	150,00	0,00	2613,75
A II	14968,59	0,00	90,00	0,00	3350,39
A III	14968,59	0,00	30,00	0,00	2304,89
A IV	14968,59	0,00	30,00	0,00	2304,89

FI FII FIII	15984,73 16737,37 16737,37	0,00 0,00 0,00	60,00 0,00 0,00	0,00 0,00 0,00	1045,50 712,86 712,86
UI	19630,48	0,00	225,00	0,00	3920,63
UII	22452,88	0,00	135,00	0,00	5025,59
UIII	22452,88	0,00	45,00	0,00	3457,34
LIIV	22452.88	0.00	45 00	0.00	3457 34

SISMA x	13086,99	-1217,05	0,00	-3755,15	0,00
SISMA y	13086,99	0,00	3039,93	0,00	27689,62

D1-CL-VI06-001.doc pag. 49 di 137

9.1.2 Sollecitazione sui pali

Si determinano i carichi sui pali $\phi 1200$ considerando il plinto come infinitamente rigido:

Nei seguenti tabulati si riportano le sollecitazioni sui pali.

SPALLA H=4.80m

	palo 1	palo 2	palo 3	palo 4	palo 5	palo 6	palo 7	palo 8	palo 9	palo 10
			ANA	LISI TRASVEF	RSALE					
passo	2,00	4,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
distanza dalla mezzeria	2,00	6,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
distanza quadratica	4,00	36,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
J	80,00									
n file	4,00									
W	160,00	53,33								
			ANAL	ISI LLONGITU	DINALE					
passo	2,00	4,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
distanza dalla mezzeria	2,00	6,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
distanza quadratica	4,00	36,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
J					80,00					
n file					4,00					
W	160,00	53,33								
Numero totale pali					16					

	Nmax	Nmin	Н	b	M
ΑI	2258,34	2121,01	428,47	1,78	762,67
A II	2477,30	2108,44	428,37	1,78	762,49
A III	2503,30	2085,32	445,38	1,78	792,77
A IV	2463,67	2122,08	428,31	1,78	762,40
FI	3244,86	2701,06	497,54	1,78	885,62
FII	3247,48	2781,00	497,52	-	885,58
FIII	3247,48	2781,00	497,52	-	885,58
UI	3225,02	2951,85	607,18	1,78	1080,78
UII	3765,38	2721,08	607,02	1,78	1080,49
UIII	3842,77	2648,00	632,53	1,78	1125,90
UIV	3783,33	2703,14	606,93	1,78	1080,34
SISMA x	3858,25	559,19	1485,03	1,78	2643,35
SISMA y	3489,36	928,07	890,41	1,78	1584,92

D1-CL-VI06-001.doc pag. 50 di 137

Spalla H=3.30m

	palo 1	palo 2	palo 3	palo 4	palo 5	palo 6	palo 7	palo 8	palo 9	palo 10
			ANA	LISI TRASVE	RSALE					
passo	2,00	4,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
distanza dalla mezzeria	2,00	6,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
distanza quadratica	4,00	36,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
J		80,00								
n file					4,00					
W	160,00	53,33								
			ANAL	ISI LLONGITU	DINALE					
passo	2,00	4,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
distanza dalla mezzeria	2,00	6,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
distanza quadratica	4,00	36,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
J					80,00					
n file					4,00					
W	160,00	53,33								
Numero totale pali					16					

	Nmax	Nmin	Н	b	М
ΑΙ	2213,52	1829,25	327,50	1,78	582,94
A II	2465,56	1783,61	327,36	1,78	582,70
A III	2486,41	1765,63	344,36	1,78	612,95
A IV	2454,03	1795,14	327,29	1,78	582,58
FI	2808,73	2665,98	356,12	1,78	633,89
FII	2801,08	2756,20	356,09	1,78	633,84
FIII	2801,08	2756,20	356,09	1,78	633,84
UI	3165,33	2540,33	465,83	1,78	829,17
UII	3823,67	2191,59	465,61	1,78	828,79
UIII	3905,73	2113,84	491,10	1,78	874,16
UIV	3857,16	2158,10	465,51	1,78	828,60
SISMA x	3440,56	640,29	1275,99	1,78	2271,27
SISMA y	3012,09	1068,77	782,39	1,78	1392,66

D1-CL-VI06-001.doc pag. 51 di 137

Pila 2

	palo 1	palo 2	palo 3	palo 4	palo 5	palo 6	palo 7	palo 8	palo 9	palo 10
			ANA	LISI TRASVEI	RSALE					
passo	4,50	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
distanza dalla mezzeria	4,50	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
distanza quadratica	20,25	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
J		40,50								
n file					2,00					
w	18,00									
			ANAL	ISI LLONGITU	DINALE					
passo	2,25	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
distanza dalla mezzeria	2,25	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
distanza quadratica	5,06	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
J					10,13					
n file					3,00					
W	13,50									
Numero totale pali		•	•		6		•	•		

	Nmax	Nmin	Н	b	М
ΑI	2297,62	2064,71	25,00	1,78	44,50
A II	2663,65	2325,88	15,00	1,78	26,70
A III	2617,06	2372,46	5,00	1,78	8,90
A IV	2617,06	2372,46	5,00	1,78	8,90
FI	2710,71	2617,54	10,00		17,80
FII	2829,17	2749,96	0,00	1,78	0,00
FIII	2829,17	2749,96	0,00	1,78	0,00
UI	2838,81	2489,43	37,50	1,78	66,75
UII	3387,85	2881,20	22,50		40,05
UIII	3317,97	2951,07	7,50	-	13,35
UIV	3317,97	2951,07	7,50		13,35
UI	3446,43	3097,06	37,50	1,78	66,75
UII	3995,47	3488,82	22,50	1,78	40,05
UIII	3925,60	3558,70	7,50	1,78	13,35
UIV	3925,60	3558,70	7,50	1,78	13,35
SISMA x	2450.20	1002.01	202.04	1 70	261.06
	2459,32	1903,01	202,84		361,06
SISMA y	3719,48	642,85	506,65	1,78	901,85

D1-CL-VI06-001.doc pag. 52 di 137

9.1.3 I pali di fondazione

Le fondazioni delle spalle e delle pile sono realizzate con pali Ø 1200 armati su tutta la loro lunghezza.

Ove la morfologia del terreno e la profondità degli scavi di fondazione lo richiedono, è stato previsto un sostegno delle pareti di scavo mediante paratie di micropali Ø 220 mm armati con tubi d'acciaio.

9.1.4 Situazione geotecnica

L'indagine geotecnica di campagna eseguita lungo lo sviluppo dell'intero tratto di strada è consistita nell'esecuzione di sondaggi a carotaggio continuo di lunghezza variabile.

Nel corso dei sondaggi sono stati prelevati campioni indisturbati sui quali sono state eseguite le prove di laboratorio.

Inoltre, durante l'esecuzione dei sondaggi sono state eseguite prove S.P.T. e misura della coesione non drenata per mezzo del Pocket Penetrometer.

D1-CL-VI06-001.doc pag. 53 di 137

9.1.5 Verifica di resistenza del palo

Nella seguente tabella si evidenziano le sollecitazioni maggiormente gravose per il singolo palo:

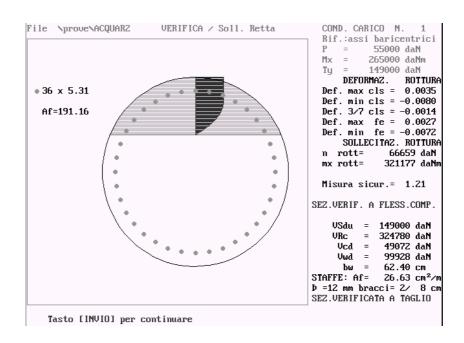
Tabella riassuntiva sollecitazioni pali								
	combo	Nmax	Nmin	Н	M	emax	emin	
SPALLA A	SISMA x	3858,25	559,19	1485,03	2643,35	4,73	0,69	
SPALLAB	SISMA x	3440,56	640,29	1275,99	2271,27	3,55	0,66	
PILA 2	SISMA y	3719,48	642,85	506,65	901,85	1,40	0,24	

Verifiche Dello Sbalzo Anteriore Della Fondazione

9.1.5.1 <u>Pali</u>

Per il calcolo delle armature dei pali si considerano le sollecitazioni valutate al paragrafo 9.1.8

9.1.5.2 Verifica armatura palo


La condizione di carico più gravosa risulta la "sisma x "

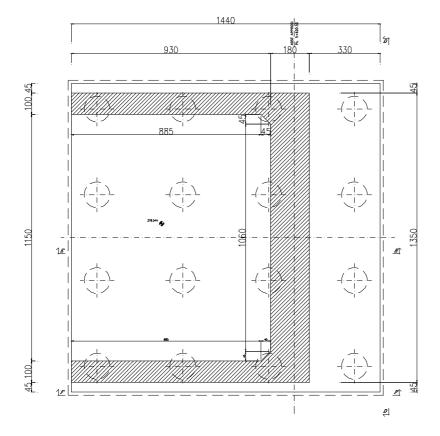
Copriferro 6 cm

Armatura verticale $36 \phi 26$ Aa = 191.16 cm^2

Necessaria nei primi 6 m

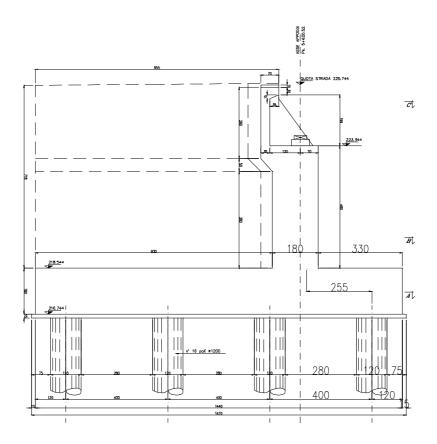
Si riporta qui di seguito le verifica del palo maggiormente sollecitato:

Si dispone spirale ϕ 12 / 8 cm a due bracci, per una lunghezza di 2 m (area staffe 26.49 cm2/m).


D1-CL-VI06-001.doc pag. 54 di 137

9.1.6 Verifica spalla

9.1.6.1 <u>Verifica zattera di fondazione</u>


Il calcolo dell'armatura per la piastra di fondazione viene effettuato sui seguenti modelli:

- -Traliccio per la mensola anteriore;
- -Piastra interna, incastrata sul paramento ed appoggiata in corrispondenza dei muri di risvolto.

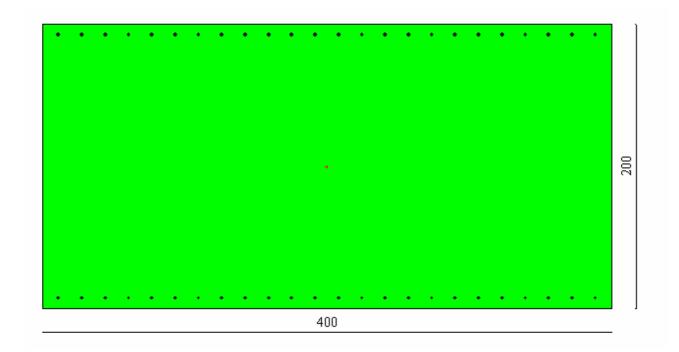
D1-CL-VI06-001.doc pag. 55 di 137

1. Traliccio per la mensola anteriore

D1-CL-VI06-001.doc pag. 56 di 137

1. Traliccio per la mensola anteriore

La condizione di carico dimensionante risulta quella da sisma, di seguito vengono calcolati i carichi fattorizzati ed effettuata la verifica agli S.L.U.

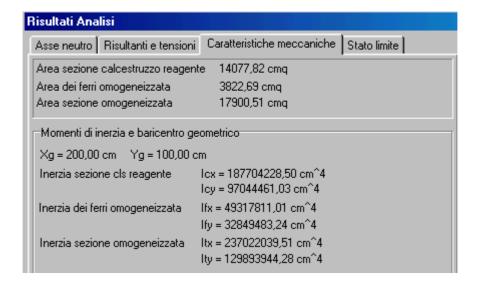

$$M_{plinto} = 2.0*25*4.00*3.75^2/2 = 1406.25 \text{ kNm} * 1.5 = 2109.4 \text{ kNm}$$

Combinazione Sisma x spalla H = 7,00 m

$$N_{palo}$$
 = 3858.25 kN
 M_{palo} = 3858.25*2.55 = 9838.54 kNm
 $M_{risultante}$ = 7729.14 kNm

Essendo il rapporto tra punto di applicazione della forza e altezza > 1 si considera il funzionamento del traliccio a mensola classica.

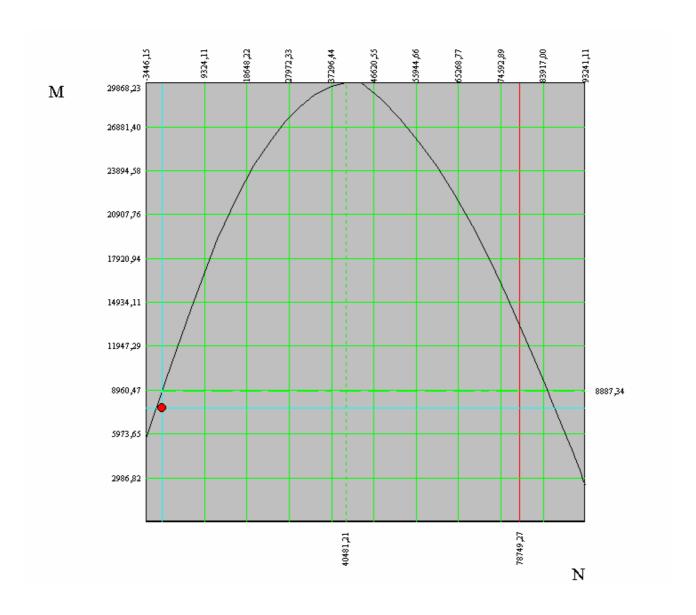
La verifica verrà effettuata su una sezione di 4,00 x 2,00 m (area di influenza del palo di fondazione).



D1-CL-VI06-001.doc pag. 57 di 137


Caratteristiche sezione Area [cmq] = 80000,00 XG [cm] = 200,00 Ix [cm^4] = 10666666666,7 YG[cm] = 100,00 Iy [cm^4] = 2666666666,7 Ixy [cm^4] = 0,0 Nr.tondini = 48 Af [cmq] = 254,85(0,32%)

Risultati Ana	lisi en la companya de la companya d	
Asse neutro	Risultanti e tensioni Caratteristiche meccaniche Stato limite	
Asse neutro		7
Xc =	35,195 cm	
Equazione:	-400,000 y+25922,183 = 0	
Intersezioni	(400,00 ; 164,81) (0,00 ; 164,81)	
Inclinazione	0,00 °	


Asse neutro Risultanti	e tensioni Caratt	eristiche mecc	aniche Stato limite				
Tensione di compressio	ne massima nel cls	: 4,985 M	Pa				
Tensione di trazione massima nel ferro -334,635 MPa							
Tensione di compressio	ne massima nel fer	ro 59,265	MPa				
Tensione tangenziale asse neutro 0,536 MPa							
i ei isioi le tarigei iziale a	330 1104(10	0,000 111					
Risultanti e punti di app Cls compresso		200,00 cm	188,27 cm				
Risultanti e punti di app	licazione						
Risultanti e punti di app Cls compresso	olicazione 3508,8542 kN	200,00 cm	188,27 cm				
Risultanti e punti di app Cls compresso Armature compresse	olicazione 3508,8542 kN 755,1670 kN	200,00 cm 200,00 cm	188,27 cm 192,70 cm				

D1-CL-VI06-001.doc pag. 58 di 137

Dominio di resistenza

D1-CL-VI06-001.doc pag. 59 di 137

Verifica a taglio

Il taglio di calcolo non deve superare il valore che, con riferimento alla resistenza di trazione di calcolo f_{ctd} , determina la formazione delle fessure oblique.

$$f_{\text{ctm}} = 0.27(\text{Rck})^{3/2} = 0.27*30^{2/3} = 2.607 \text{ Mpa}$$

$$f_{\text{ctk}} = 0.7*2.607 = 1.82 \text{ Mpa c}$$

coincidente $con f_{ctd}$ essendo la verifica agli S.L.U.

$$V_{cd} = (0.6*1.82*4,00*1,92)*10^3 = 8408.5 \text{ kN}.$$

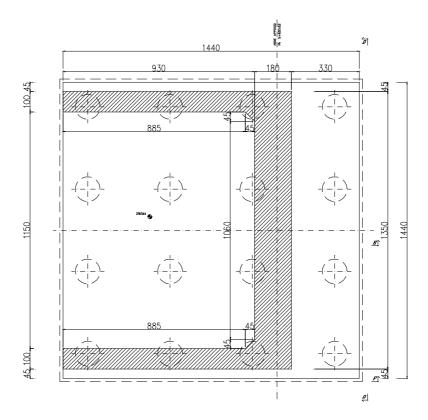
Non si ha bisogno di armare a taglio essendo $V_{cd} > V_{sdu}$ essendo $V_{sdu} = N_{palo}$.

Verifica a punzonamento del palo sulla zattera di fondazione

In corrispondenza dei pilastri e di carichi concentrati si effettua la verifica a punzonamento, la forza resistente al punzonamento in assenza di apposita armatura è assunta pari a:

$$F = 0.5 * u * h * f_{ctd} = 0.5*6.90*2*1.82*1.000 = 12558 kN$$

Con u = perimetro medio della sezione di scorrimento; h = altezza della zattera;


Dall'analisi risulta N < F, con coefficiente di sicurezza 3.25

D1-CL-VI06-001.doc pag. 60 di 137

9.1.7 Verifica della parte della fondazione tra i muri laterali e quello frontale

Per la valutazione delle sollecitazioni sul solettone posteriore si considera una piastra incastrata al muro di paramento ed appoggiata in corrispondenza dei muri di risvolto soggetta ai carichi agenti verso il basso dovuti al peso proprio, peso del terreno, dai carichi permanenti, dalle azioni dei treni di carico ed all'azione media ripartita delle forze concentrate dovute ai carichi assiali trasmessi dai pali.

La geometria della struttura è indicata in figura

geometria della struttura

Da quanto detto in calce risulta:

carichi uniformemente ripartiti

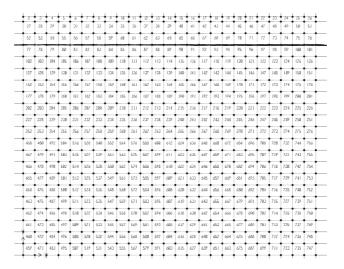
p. proprio 25*2.0	=	50.0	kN/mq
p. terreno 7.20 * 18	= 129.6	kN/mq	
p. perm	= 12.5	kN/mq	
p. veicoli	= 10.0	kN/mq	
TOTALE	= 202.1	kN/mq	

Carico fattorizzato 1,5*202.1 = 303.15 kN/mq

Azioni trasmesse dai pali (carichi concentrati condizione di carico UI)

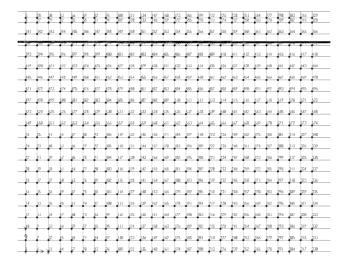
Nmedio = 49414,90/16 = 3088,43 kN

D1-CL-VI06-001.doc pag. 61 di 137


Ogni palo trasmette dunque un carico ripartito sulla proprio area di influenza (4.00 m x 4.00 m) che vale:

qmedio pali = 3088.43/(4.00*4.00) = 193.03 kN/mq

Dunque il carico netto superficiale sulla piastra vale:


q = 303.15-193.03 = 113.33 kN/mq

Le verifiche agli S.L.U. vengono svolte tramite un modello agli elementi finiti:

Mesh di calcolo, con elementi shell

D1-CL-VI06-001.doc pag. 62 di 137

Pianta con i nodi di riferimento

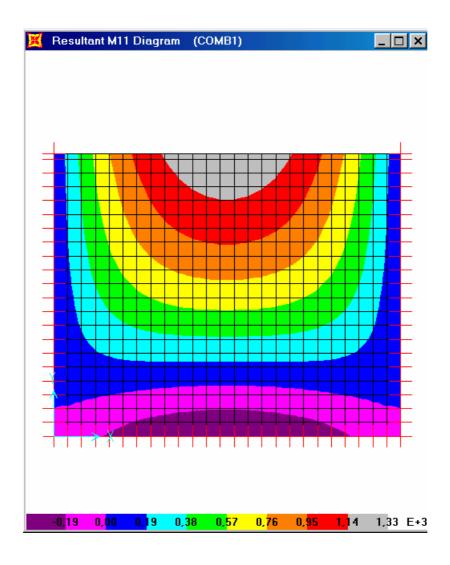


Diagramma dei Momenti in direzione trasversale sulla zattera

D1-CL-VI06-001.doc pag. 63 di 137

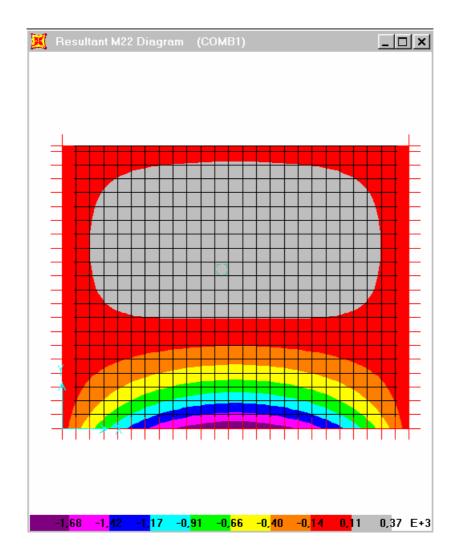
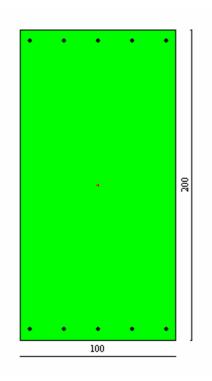
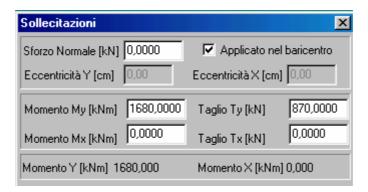
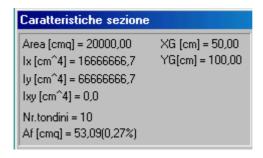


Diagramma dei Momenti in direzione longitudinale sulla zattera

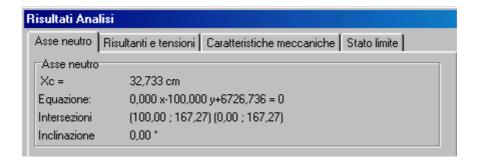
Si ha:

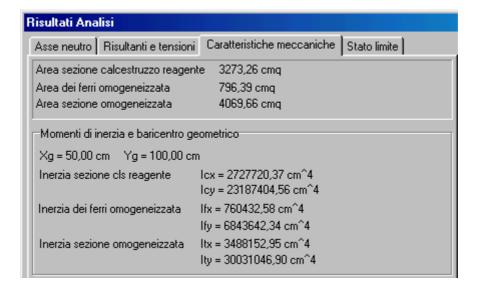

Armatura in direzione trasversale

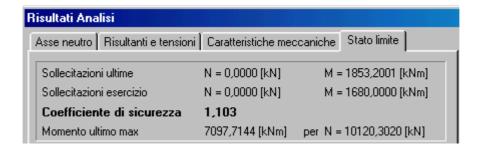

• SHELL 603 My = -1680 kNmTx = 870 kN

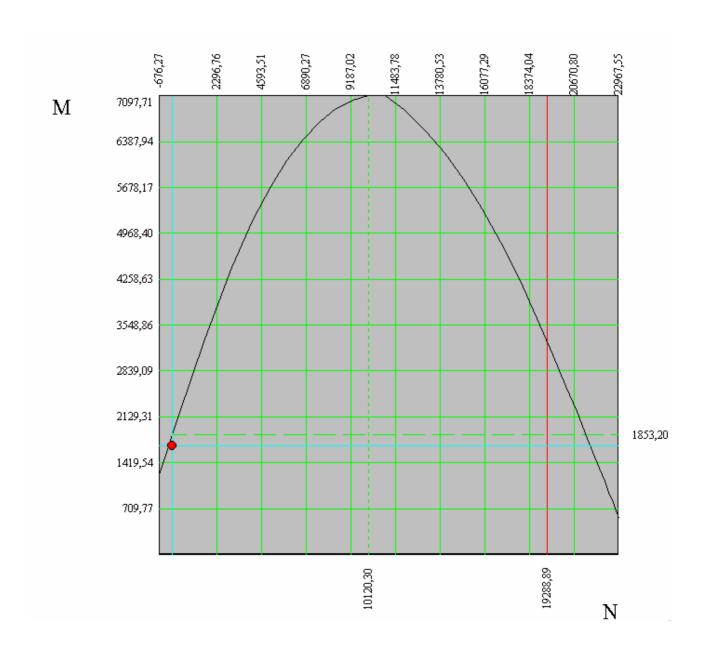

• SHELL 14 Mx = 1330 kNmTy = 425 kN

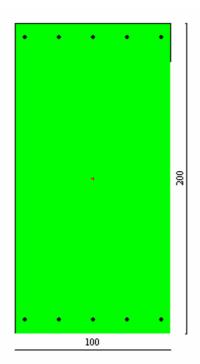
D1-CL-VI06-001.doc pag. 64 di 137

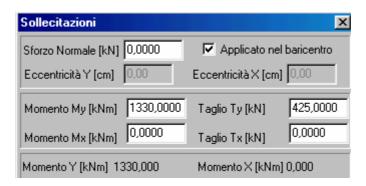

La verifica verrà effettuata su una sezione di 1,00 x 2,00 m.

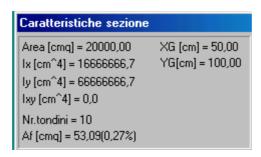


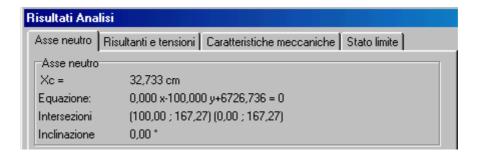

D1-CL-VI06-001.doc pag. 65 di 137

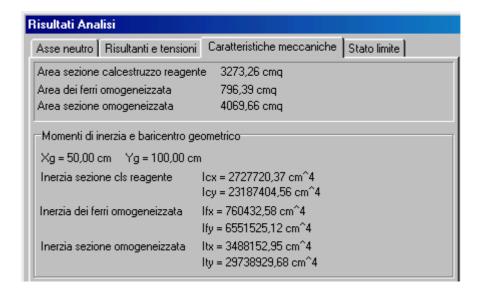

Asse neutro Risultanti	e tensioni Carat	teristiche me	ccaniche Stato limite
Tensione di compressio	one massima nel cl	s 4,734	MPa
Tensione di trazione ma	assima nel ferro	-347,0	129 MPa
Tensione di compressio	one massima nel fe	rro 55,17	'3 MPa
		0.477	MD-
I ensione tangenziale a	sse neutro	0,477	MLG
Tensione tangenziale a -Risultanti e punti di app Cls compresso		0,477 50,00 cm	189,09 cm
Risultanti e punti di app	olicazione		
-Risultanti e punti di app Cls compresso	olicazione 774,7740 kN	50,00 cm	189,09 cm
-Risultanti e punti di app Cls compresso Armature compresse	olicazione 774,7740 kN 146,4645 kN	50,00 cm 50,00 cm	189,09 cm 192,70 cm


D1-CL-VI06-001.doc pag. 66 di 137

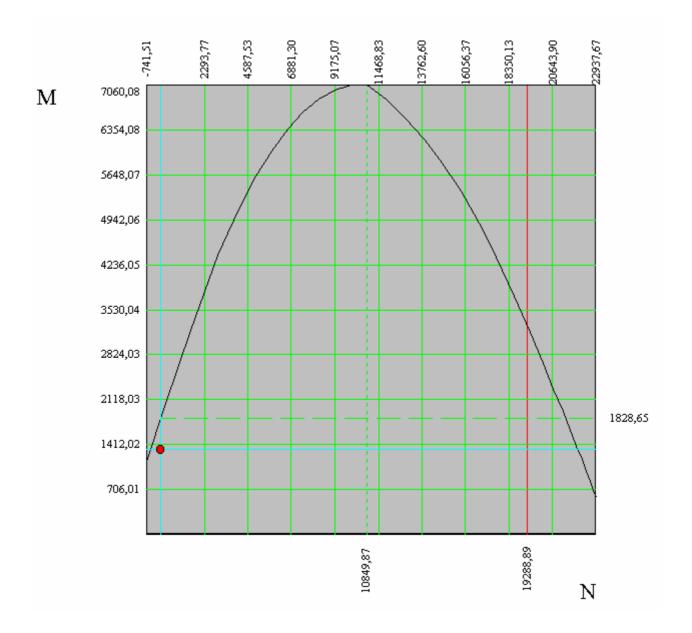



Dominio di resistenza


D1-CL-VI06-001.doc pag. 67 di 137



D1-CL-VI06-001.doc pag. 68 di 137


Asse neutro Risultanti	e tensioni Carat	teristiche me	ccaniche Stato limite
Tensione di compressio	ne massima nel cl	s 3,844	MPa
Tensione di trazione ma	assima nel ferro	-278,2	295 MPa
Tensione di compressio	ne massima nel fe	rro 41,28	32 MPa
Tensione tangenziale a	sse neutro	0,236	MPa
Tensione tangenziale a -Risultanti e punti di app Cls compresso		0,236 50,00 cm	MPa 189,09 cm
- Risultanti e punti di app	olicazione		
Risultanti e punti di app Cls compresso	olicazione 629,1851 kN	50,00 cm	189,09 cm
-Risultanti e punti di app Cls compresso Armature compresse	olicazione 629,1851 kN 109,5886 kN	50,00 cm 50,00 cm	189,09 cm 190,70 cm

D1-CL-VI06-001.doc pag. 69 di 137

Dominio di resistenza

D1-CL-VI06-001.doc pag. 70 di 137

Verifica a taglio

Il taglio di calcolo non deve superare il valore che, con riferimento alla resistenza di trazione di calcolo f_{ctd} , determina la formazione delle fessure oblique.

$$f_{\text{ctm}} = 0.27 (\text{Rck})^{3/2} = 0.27*30^{2/3} = 2.61 \text{ Mpa}$$

 $f_{\text{ctk}} = 0.7*2.61 = 1.82 \text{ Mpa c}$

coincidente $con f_{ctd}$ essendo la verifica agli S.L.U.

$$V_{cd} = (0.6*1.82*4,00*1,92)*10^3 = 8408.5 \text{ kN}.$$

Non si ha bisogno di armare a taglio essendo $V_{cd} > V_{sdu}$ essendo $V_{sdu} = N_{palo}$.

Verifica a punzonamento del palo sulla zattera di fondazione

In corrispondenza dei pilastri e di carichi concentrati si effettua la verifica a punzonamento, la forza resistente al punzonamento in assenza di apposita armatura è assunta pari a:

$$F = 0.5 * u * h * f_{ctd} = 0.5*6.90*2*1.82*1.000 = 12558 kN$$

Con u = perimetro medio della sezione di scorrimento; h = altezza della zattera;

Dall'analisi risulta N < F, con coefficiente di sicurezza 4.08

D1-CL-VI06-001.doc pag. 71 di 137

10 Gli elementi secondari

10.1 La trave paraghiaia

Per la valutazione delle sollecitazioni sulla trave paraghiaia si considera una mensola semplice soggetta alle azioni di carico di cui al punto 6.11. La trave paraghiaia ha dimensioni fisse di 0,35 x 2,30 x 13,50 m. La verifica verrà effettuata considerando una mensola unitaria.

10.1.1 Le azioni

Le azioni di calcolo da considerarsi in aggiunta alla combinazione di calcolo dimensionante risultano differenziati in caso di normale utilizzo della struttura o in caso di sisma, infatti nel primo caso si dovranno considerare: frenatura, spinta del terreno, spinta dei carichi permanenti, spinta del sovraccarico viario, peso proprio della struttura; mentre nel secondo caso saranno presenti spinte e inerzie sismiche e non verranno considerate le azioni frenanti.

10.1.2 Riepilogo sollecitazioni

10.1.2.1 Calcolo delle azioni frananti

Sul terrapieno a tergo della spalla si ipotizza la presenza del treno di carico q_{1a} , l'azione di carico di frenatura viene ripartito come pressione su l'area del paraghniaia.

$$F = (600+300+210)/10 = 111 \text{ KN}$$

Questa azione viene ripartita su una larghezza del paraghiaia pari all' intera carreggiata, più una larghezza data dalla diffusione nel paraghiaia a 30°.

L'area sulla quale agisce l'azione di frenatura/avviamento è rettangolare, avente:

$$h = h_{paraghiaia} = 2,40$$
 m

L'area vale: Ap = B*hp = 25.2 mq

La pressione equivalente vale:

$$p_{eq.} = Ft / Ap = 111,00/25,20 = 4,41 KN/mq$$

L'azione tagliante e il momento flettente alla base del paraghiaia valgono:

$$T = p_{eq.}^* hp *\gamma s = 15,88 KN/m$$

$$M = p_{eq.}* hp^2 / 2 * \gamma s = 19,05 KNm/m$$

D1-CL-VI06-001.doc pag. 72 di 137

10.1.2.2 <u>Calcolo delle azioni</u>

Carichi non sismici S.L.U.

				Paragh	niaia				
				Az. Vertic	ali				
	Spess.	Н	L	braccio	V(kN)	M (kNn	n)		γs
Paraghiaia	0,35	2,3	1		30,19	0,00			1,5
Sub totale					30,19	0,00			
Az. Orizzontali									
	γ	h	L	coeff.	q(kN/m)	braccio	H(kN)	M (kNm)	
Frenatura					4,41	2,3	15,21	17,50	1,5
sp.Terra	18	2,30	1,00	0,49		0,767	34,99	26,83	1,5
sp. Permanenti		2,30	1,00	0,49	12,50	1,150	21,13	24,30	1,5
sp.Treno di carico		2,30	1,00	0,49	19,10	1,150	32,29	37,13	1,5
Sub totale							103,63	105,76	
Totale N=	30,19 1	ίN	M=	105,76	kNm	H=	103,63	kN	

D1-CL-VI06-001.doc pag. 73 di 137

Carichi sismici S.L.U.

					Para	eghiaia					
					Az. Vertic	ali					
	Spess.	н	L	braccio	V(kN)	M (kNm)					γs
Paraghiaia	0,35	2,3	1		20,13	0,00					
Sub totale				0,000	20,13	0,00					
Az. Orizzontali											
	γ	Spess.	h	L	Reazione	coeff.	q(kN/m)	braccio	H(kN)	M (kNm)	
sp.Terra	18		2,30	1,00		0,490		0,77	23,33	17,89	
sp. Permanenti			2,30	1,00		0,490	12,50	1,15	14,09	16,20	
sp.Treno di carico			2,30	1,00		0,490	0,00	1,15	0,00	0,00	
incr. Sp. Terra	18		2,30	1,00		0,172		1,53	8,19	12,56	
incr. Sp. Perm.			2,30	1,00		0,172	12,50	1,15	4,95	5,69	
incr. Treno di caric			2,30	1,00		0,172	0,00	1,15	0,00	0,00	
inerzia paraghiaia					20,13	0,350		1,15	7,04	8,10	
inerzia terra	18		2,30	9,10		0,350		1,15	131,86	151,64	
inerzia perm.			2,30	1,00		0,350	12,50	2,30	10,06	23,14	
Sub totale									199,52	235,21	
Totale		N I-	20,13	13.7	3/-	235,21	kNm		199,52	kN	

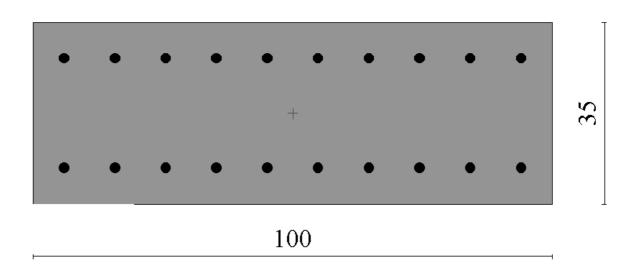
D1-CL-VI06-001.doc pag. 74 di 137

10.1.2.3 <u>Calcolo delle azioni di fessurazione</u>

			Paragh	naia				
			Az. Vertic	ali				
pess.	Н	L	braccio	V(kN)	M (kNn	n)		γs
0,35	2,3	1		20,13	0,00			
				20,13	0,00			
γ	h	L	coeff.	q(kN/m)	braccio	H(kN)	M (kNm)	
				0	2,3	0,00	0,00	(
18	2,30	1,00	0,49		0,767	23,33	17,89	
	2,30	1,00	0,49	12,50	1,150	14,09	16,20	
	2,30	1,00	0,49	19,10	1,150	2,15	2,48	0,3
						39,57	36,56	
	γ	γ h 18 2,30 2,30	pess. H L 0,35 2,3 1 γ h L 18 2,30 1,00	pess. H L braccio 0,35 2,3 1 γ h L coeff. 18 2,30 1,00 0,49 2,30 1,00 0,49	γ h L coeff. q(kN/m) 18 2,30 1,00 0,49 2,30 1,00 0,49 12,50	γ h L coeff. q(kN/m) M (kN/m) 0,35 2,3 1 20,13 0,00 20,13 0,00 γ h L coeff. q(kN/m) braccio 0 2,3 18 2,30 1,00 0,49 0,767 2,30 1,00 0,49 12,50 1,150	γ h L coeff. q(kN/m) braccio H(kN) 35 2,3 1 20,13 0,00 20,13 0,00 20,13 0,00 20,13 0,00 20,13 0,00 18 2,30 1,00 0,49 0,767 23,33 2,30 1,00 0,49 12,50 1,150 14,09 2,30 1,00 0,49 19,10 1,150 2,15	γ h L coeff. q(kN/m) braccio H(kN) M (kNm) γ h L coeff. q(kN/m) braccio H(kN) M (kNm) 18 2,30 1,00 0,49 0,767 23,33 17,89 2,30 1,00 0,49 12,50 1,150 14,09 16,20 2,30 1,00 0,49 19,10 1,150 2,15 2,48

D1-CL-VI06-001.doc pag. 75 di 137

10.1.3 Le combinazioni


Le combinazioni di carico sono le seguenti:

	COMBINAZIONI	g1	g2	g3	ε1	ε2	εз	ε4	q1	q2	q3	q4	q5	q6	q7	q8	q9
	Al	1,00	1,00	1,00	1,00	1,00	1,00	1,00	0,00	0,00	0,00	0,00	1,00	0,00	1,00	0,00	1,00
SLE	All	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	0,00	0,00	0,60	0,00	1,00	1,00	1,00
S	AIII	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	0,00	0,20	0,00	1,00	1,00	1,00
	AIV	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	0,00	1,00	0,20	0,00	1,00	1,00	1,00
	AV	1,00	1,00	1,00	1,00	1,00	1,00	1,00	0,00	0,00	0,00	0,00	0,00	1,00	0,00	0,00	0,00
a ne																	
	FI	1,00	1,00	1,00	1,00	1,00	1,00	1,00	0,00	0,00	0,00	0,00	0,40	0,00	0,00	0,00	0,00
razio	FII	1,00	1,00	1,00	1,00	1,00	1,00	1,00	0,40	0,25	0,00	0,00	0,00	0,00	0,00	0,00	0,00
ы	FIII	1,00	1,00	1,00	1,00	1,00	1,00	1,00	0,40	0,25	0,00	0,00	0,00	0,00	0,00	0,00	0,00
SL E fessur																	
	T UI	1,50	1.50	1.50	1.20	1.20		1.20	1.20	0.00	0.00	0.00	0,00	1.50		1,50	1,50
⊃.	UII	1.50	1.50	1.50	1.20	1.20	_	1.20		.50			0,00			1,50	
SLU	UIII	1.50	1.50	1.50	1,20	1,20		1.20	1.20 1	.50	1.50					1,50	1,50
	UIV	1.50	1.50	1.50	1.20	1.20		1.20	1.20 1	.50	1.50	0.00				1.50	

D1-CL-VI06-001.doc pag. 76 di 137

10.1.4 Le verifiche

Si riportano le verifiche per la condizione di carico dimensionante, su di una sezione 0,35x1,00 m²

D1-CL-VI06-001.doc pag. 77 di 137

Caratteristiche sezione	
Area [cmq] = 3500,00 lx [cm^4] = 2916666,7 ly [cm^4] = 357291,7 lxy [cm^4] = 0,0	XG [cm] = 50,00 YG[cm] = 17,50
Nr.tondini = 20 Af [cmq] = 62,83(1,80%)	

Asse neutro

Xc = 11,116 cm

Equazione: 0,000 x-100,000 y+638,400 = 0 Intersezioni (100,00 ; 23,88) (0,00 ; 23,88)

Inclinazione 0,00 °

Tensione di compressione massima nel cls

Tensione di trazione massima nel ferro

Tensione di compressione massima nel ferro

Tensione di compressione massima nel ferro

Tensione tangenziale asse neutro

13,870 MPa

-316,014 MPa

77,038 MPa

0,850 MPa

Risultanti e punti di applicazione

 Cls compresso
 770,9143 kN
 50,00 cm
 31,29 cm

 Armature compresse
 242,0223 kN
 50,00 cm
 28,00 cm

 Compressione
 1012,9366 kN
 50,00 cm
 30,51 cm

 Armature in trazione
 992,7866 kN
 50,00 cm
 7,00 cm

 Trazione
 992,7866 kN
 50,00 cm
 7,00 cm

Area sezione calcestruzzo reagente 1111,60 cmq
Area dei ferri omogeneizzata 942,48 cmq
Area sezione omogeneizzata 2054,08 cmq

-Momenti di inerzia e baricentro geometrico:

Xg = 50,00 cm Yg = 17,50 cm

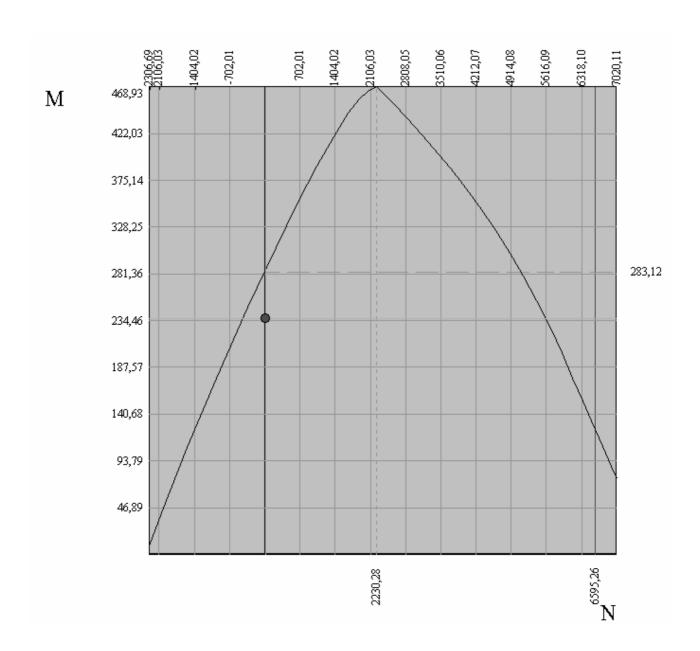
Inerzia sezione cls reagente | Icx = 926333,00 cm⁴

 $loy = 169973,06 cm^4$

Inerzia dei ferri omogeneizzata Ifx = 743370,64 cm⁴

Ify = 103908,18 cm⁴

Inerzia sezione omogeneizzata Itx = 1669703,63 cm⁴


Ity = 273881,23 cm⁴

D1-CL-VI06-001.doc pag. 78 di 137

Sc	ollecitazioni ultime	N = 24,3963 [kN]	M = 285,7335 [kNm]
So	ollecitazioni esercizio	N = 20,1500 [kN]	M = 236,0000 [kNm]
Co	oefficiente di sicurezza	1,211	
Me	omento ultimo max	468,9269 [kNm]	per N = 2230,2828 [kN]

D1-CL-VI06-001.doc pag. 79 di 137

Dominio di resistenza

Verifica a taglio

Il taglio di calcolo non deve superare il valore che, con riferimento alla resistenza di trazione di calcolo f_{ctd} , determina la formazione delle fessure oblique.

$$\begin{split} f_{\rm ctm} &= 0.27 ({\rm Rck})^{2/3} = 0.27*25^{2/3} = 2.31 \ {\rm Mpa} \\ f_{\rm ctk} &= 0.7*2.31 = 1.61 \ {\rm Mpa} \\ V_{\rm cd} &= \ (0.6*1.61*1,00*1,94)*10^3 = 1874 \ {\rm kN} \ . \end{split}$$

Non si ha bisogno di armare a taglio essendo $V_{cd} > V_{sdu}$ essendo $V_{sdu} = N_{palo}$.

D1-CL-VI06-001.doc pag. 80 di 137

10.1.4.1 Calcolo dell'apertura delle fessure

Tale verifica è soddisfatta quando il *valore caratteristico di apertura delle fessure* \mathbf{w}_k nella zona \mathbf{Ac}_{eff} di efficacia delle armature non supera il valore prefissato dalla Norma, stabilito in funzione delle condizioni ambientali (poco aggressivo, moderatamente aggressivo, molto aggressivo) e del tipo di combinazione delle azioni (frequente o quasi permanente).

Il valore w_k calcolato si riferisce all'apertura della fessura misurata sulla superficie del cls all'interno dell'area di efficacia dell'armatura, e vale:

$$\mathbf{w}_{k} = 1.7 \times \mathbf{w}_{m}$$
 con $\mathbf{w}_{m} = \mathbf{\varepsilon}_{sm} \times \mathbf{s}_{rm}$

in cui \mathbf{w}_m rappresenta il valore medio dell'apertura calcolata in base alla deformazione unitaria media dell'armatura ϵ_{sm} nel tratto s_{rm} pari alla distanza media fra le fessure per la condizione di fessurazione stabilizzata in corrispondenza del livello baricentrico dell'armatura all'interno dell'area efficace.

Per quanto riguarda i singoli termini di cui sopra, si ha:

$$- s_{rm} = 2(c + \frac{s}{10}) + k_2 k_3 \frac{\Phi}{\rho_r}$$

-
$$\varepsilon_{sm} = \frac{\sigma_s}{E_s} \left[1 - \beta_1 \beta_2 \left(\frac{\sigma_{sr}}{\sigma_s} \right)^2 \right]$$
 i cui simboli sono chiariti nel prospetto che segue.

In particolare:

- σ_s è la tensione nell'acciaio calcolata nella sezione fessurata per la combinazione di azioni considerata, in corrispondenza del livello baricentrico dell'armatura all'interno dell'area efficace;
- σ_{sr} è la tensione nell'acciaio calcolata nella sezione fessurata per la sollecitazione corrispondente al raggiungimento della resistenza a trazione f_{ctm} nella fibra di cls più sollecitata in sezione interamente reagente, in corrispondenza del livello baricentrico dell'armatura all'interno dell'area efficace.

Per quanto concerne il calcolo di σ_{sr} si procede così:

- si determina il momento di inerzia I della sezione (prescindendo dall'armatura) nel piano di sollecitazione considerato, considerando la sezione interamente reagente (I° stadio);
- ricordo ora che la tensione nella generica fibra di cls più esterna (ossia più sollecitata) è data da:

$$\sigma_c = \frac{M}{I} y_{\text{max}}$$
 con $y_{\text{max}} = \text{massima distanza della fibra di cls dall'asse baricentrico della sezione;}$

- per la definizione di σ_{sr} , deve essere M la sollecitazione corrispondente al raggiungimento della f_{ctm} nella fibra di cls più sollecitata in sezione interamente reagente, per cui

$$M = \frac{I}{V_{\text{max}}} f_{ctm}$$

- da cui σ_{sr} è la tensione calcolata nella sezione fessurata (ossia con cls non reagente a trazione : II $^{\circ}$ stadio)

D1-CL-VI06-001.doc pag. 81 di 137

VI06 - Viadotto Acquarossa

Di seguito, per <u>combinazioni quasi permanenti</u> si intendono le **FI e FIII**, mentre per combinazione rara si intende la FII.

10.2 Il muro frontale

Per la valutazione delle sollecitazioni sul muro frontale si considera una mensola semplice soggetta alle azioni di carico di cui al punto 6.2.1. Il muro frontale ha dimensioni in pianta di 1,80 x 13,50 m. Ai fini della valutazione delle sollecitazioni di spiccato del muro di paramento si considera l'intera larghezza dell'elemento che è pari a 13,50 m.

10.2.1 Le azioni

Le azioni di calcolo da considerarsi in aggiunta alla combinazione di calcolo dimensionante risultano differenziati in caso di normale utilizzo della struttura o in caso di sisma, infatti nel primo caso si dovranno considerare: frenatura, spinta del terreno, spinta dei carichi permanenti, spinta del sovraccarico viario, peso proprio della struttura; mentre nel secondo caso saranno presenti spinte e inerzie sismiche e non verranno considerate le azioni frenanti.

10.2.2 Riepilogo sollecitazioni

10.2.2.1 <u>Calcolo delle azioni</u>

Carichi non sismici S.L.U.

D1-CL-VI06-001.doc pag. 82 di 137

					N	Iuro di	parament	0				
Az. Verticali		**			an I	an l		Hann		ı		
D 1	Spess.	Н	L	Reazione	coeff.	coeff.	braccio	V(kN)	Mlong (kNm)			γs
Paraghiaia D	0,35	2,3	13,5		25		-1,750	407,53				1,5
Paramento Impalcato	1,80	4,8	13,5	7950,00	25 1,00	1,00	0,000 0,2	4374,00 7950				1,5
Totale				7930,00	1,00	1,00	0,2	12731,53	,			
Az. Orizzontali												
	γ	Spess.	h	L	Reazione	coeff.	coeff.	q	braccio	H(kN)	Mlong (kNm)	
Frenatura				13,5						205,335	236,25	
Impalcato					2160	1,00	1,00		7,5	3240		1,5
sp.Terra	18		7,10	13,5		0,49			2,37	4501,74	10654,12	1,5
sp. Permanenti			7,10	13,5		0,49		12,50	3,55	880,62	3126,21	1,5
sp.Treno di carico			7,10	13,5		0,49		19,1	3,55	1345,59	4776,85	1,5
Totale										10173,29	34993,42	
				N=	12731,53	kN	M = 3	35870,24	kNm	Н=	10173,29	kN

D1-CL-VI06-001.doc pag. 83 di 137

Carichi sismici S.L.U.

						Muro d	i paramer	nto				
Condizioni sismiche												
Az. Verticali												
	Spess.	Н	L	Reazione	coeff.	coeff.	braccio	V(kN)	M (kNm)			
Paraghiaia	0,35	2,3	13,5	-	25		-1,750	271,69	-475,45			
aramento	1,80	4,8	13,5		25		0,00	2916,00	0			
npalcato				3970,00	1,00	1,00	0,2	3970	794,00			
otale								7157,69	318,55			
z. Orizzontali												
	γ	Spess.	h	L	Reazione	coeff.	coeff.	q	braccio	H(kN)	M (kNm)	
								<u> </u>				
mpalcato					5105	1,00	1,00		7,50	5105	38287,5	
.Terra	18		7,10	13,4		0,49			2,37	2978,93	7050,13	
. Permanenti			7,10	13,4		0,49		12,50	3,55	582,73	2068,70	
.Accidentali			7,10	13,4		0,49		0	3,55	0,00	0,00	
r. Sp. Terra	18		7,10	13,4		0,172			4,73	1045,66	4949,48	
er. Sp. Perm.			7,10	13,4		0,172		12,50	3,55	204,55	726,16	
cr. Treno di carico			7,10	13,4		0,172		0	3,55	0,00	0,00	
rzia paraghiaia					271,69				8,15	95,09	774,99	
zia paramento					2916,00	0,35			2,40	1020,60	2449,44	
zia terra	18		7,10	13,4		0,35			3,55	4255,61	15107,42	
rzia perm.			7,81	13,4		0,35		12,50	9,30	457,86	,	
otale										15746,04	75671,93	
				N=	7157,69	kN	M =	75990,48	kNm	н=	15746,04	kN

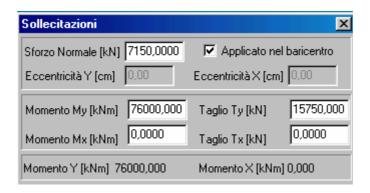
D1-CL-VI06-001.doc pag. 84 di 137

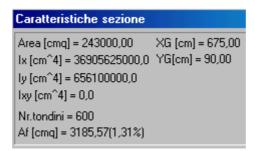
10.2.2.2 <u>Calcolo delle azioni di fessurazione</u>

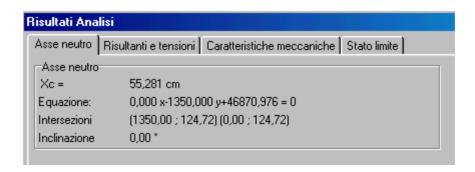
						N	Iuro di pa	ramento					
Az. Verticali													
	Spess.	Н	L	Reazione	coeff.	coeff.	braccio	V(kN)	Mlong (kNm)				γs
Paraghiaia	0,35	2,3	13,5		25		-1,750	271,69	-475,45	.11			1
Paramento	1,80	4,8	13,5		25		0,00	2916,00	0				1
mpalcato				4310,00	1,00	1,00	0,2	4310,00	862,00				1
Totale								7497,69	386,55				
Az. Orizzontali													
	γ	Spess.	h	L	Reazione	coeff.	coeff.	q	braccio	H(kN)	Mlong (kNm)		
mpalcato					75	1,00	1,00		7,5	75	562,5		1
p.Terra	18		7,10	13,5		0,49			2,37	3001,16	7102,74		1
p. Permanenti			7,10	13,5		0,49		12,50	3,55	587,08	2084,14		1
p.Accidentali			7,10	13,5		0,49		19,1	3,55	89,71	318,46		0,1
otale										3752,95	10067,84		
				N=	7497,69	kN	M =	10454,39	kNm	H=	3752,95	kN	

D1-CL-VI06-001.doc pag. 85 di 137

10.2.3 Le combinazioni


Le combinazioni di carico sono le seguenti:


	COMBINAZIONI	g1	g2	g3	ε1	ε2	εз	ε4	q1	q2	q3	q4	q5	q6	q7	q8	q9
	Al	1,00	1,00	1,00	1,00	1,00	1,00	1,00	0,00	0,00	0,00	0,00	1,00	0,00	1,00	0,00	1,00
SLE	All	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	0,00	0,00	0,60	0,00	1,00	1,00	1,00
S	AIII	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	0,00	0,20	0,00	1,00	1,00	1,00
	AIV	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	0,00	1,00	0,20	0,00	1,00	1,00	1,00
	AV	1,00	1,00	1,00	1,00	1,00	1,00	1,00	0,00	0,00	0,00	0,00	0,00	1,00	0,00	0,00	0,00
di ne																	
azior	FI	1,00	1,00	1,00	1,00	1,00	1,00	1,00	0,00	0,00	0,00	0,00	0,40	0,00	0,00	0,00	0,00
	FII	1,00	1,00	1,00	1,00	1,00	1,00	1,00	0,40	0,25	0,00	0,00	0,00	0,00	0,00	0,00	0,00
ыs	FIII	1,00	1,00	1,00	1,00	1,00	1,00	1,00	0,40	0,25	0,00	0,00	0,00	0,00	0,00	0,00	0,00
SLE fessur																	
	UI	1,50	1,50	1,50	1,20	1,20		1,20					0,00			1,50	
SLU	UII	1,50	1,50	1,50	1,20	1,20		1,20	1,20 1	,50	1,50	0,00	0,00	0,90		1,50	1,50
ls s	UIII	1,50	1,50	1,50	1,20	1,20		1,20	1,20 1	,50	1,50	1,50	0,00	0,30		1,50	1,50
	UIV	1,50	1,50	1,50	1,20	1,20		1,20	1,20 1	,50	1,50	0,00	1,50	0,30		1,50	1,50

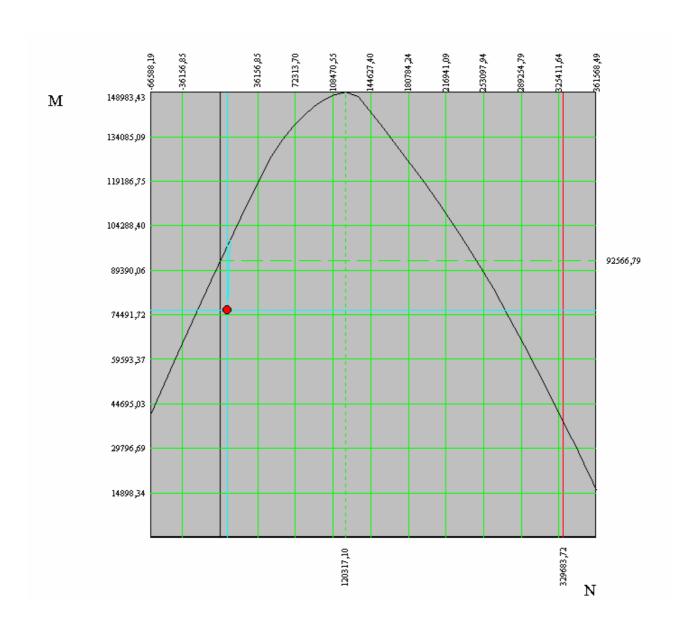

D1-CL-VI06-001.doc pag. 86 di 137

10.2.4 Le verifiche

Si riportano le verifiche per la condizione di carico dimensionante, su di una sezione 13.50x1,80 m²



D1-CL-VI06-001.doc pag. 87 di 137


sultati Analisi														
Asse neutro - Risultanti	e tensioni Caratteri	istiche mecca	niche Stato limite											
Tensione di compressio	ne massima nel cls	9,789 MP	a											
Tensione di trazione ma	assima nel ferro	-303,927	MPa											
Tensione di compressio	ne massima nel ferro	119,481	MPa											
Tensione tangenziale a	sse neutro	0,773 MP	a											
Tensione tangenziale a -Risultanti e punti di app Cls compresso		0,773 MP 675,00 cm	a 161,57 cm											
- -Risultanti e punti di app	olicazione													
Risultanti e punti di app Cls compresso	olicazione 36528,4251 kN	675,00 cm	161,57 cm											
-Risultanti e punti di app Cls compresso Armature compresse	olicazione 36528,4251 kN 17761,4559 kN	675,00 cm 675,00 cm	161,57 cm 166,91 cm											

Risultati Analisi	
Asse neutro Risultanti e tensioni	Caratteristiche meccaniche Stato limite
Area sezione calcestruzzo reagent	e 74629,02 cmq
Area dei ferri omogeneizzata	47783,62 cmq
Area sezione omogeneizzata	122412,65 cmq
_	
_	Ifx = 7110369109,92 cm ⁴ Ify = 281535857,95 cm ⁴
_	Itx = 18444652079,46 cm ⁴ Ity = 590752697,41 cm ⁴

D1-CL-VI06-001.doc pag. 88 di 137

Dominio di resistenza

Verifica a taglio

Il taglio di calcolo non deve superare il valore che, con riferimento alla resistenza di trazione di calcolo f_{ctd} , determina la formazione delle fessure oblique.

$$f_{\text{ctm}} = 0.27(\text{Rck})^{2/3} = 0.27*35^{2/3} = 2.89 \text{ Mpa}$$

$$f_{\text{ctk}} = 0.7*2.89 = 2.02 \text{ Mpa}$$

 $f_{\rm ctk}$ coincidente ${\rm con}\,f_{\rm ctd}$ essendo la verifica agli S.L.U.

$$V_{cd} = (0.6*2.02*13.5*1.70)*10^3 = 27.520 \text{ kN}$$

Non si dispone armatura a taglio essendo:

$$V_{cd}{>}V_{sdu}$$

D1-CL-VI06-001.doc pag. 89 di 137

10.2.4.1 Calcolo dell'apertura delle fessure

Tale verifica è soddisfatta quando il *valore caratteristico di apertura delle fessure* \mathbf{w}_k nella zona \mathbf{Ac}_{eff} di efficacia delle armature non supera il valore prefissato dalla Norma, stabilito in funzione delle condizioni ambientali (poco aggressivo, moderatamente aggressivo, molto aggressivo) e del tipo di combinazione delle azioni (frequente o quasi permanente).

Il valore w_k calcolato si riferisce all'apertura della fessura misurata sulla superficie del cls all'interno dell'area di efficacia dell'armatura, e vale:

$$\mathbf{w}_{k} = 1.7 \times \mathbf{w}_{m}$$
 con $\mathbf{w}_{m} = \mathbf{\varepsilon}_{sm} \times \mathbf{s}_{rm}$

in cui \mathbf{w}_m rappresenta il valore medio dell'apertura calcolata in base alla deformazione unitaria media dell'armatura ϵ_{sm} nel tratto s_{rm} pari alla distanza media fra le fessure per la condizione di fessurazione stabilizzata in corrispondenza del livello baricentrico dell'armatura all'interno dell'area efficace.

Per quanto riguarda i singoli termini di cui sopra, si ha:

$$- s_{rm} = 2(c + \frac{s}{10}) + k_2 k_3 \frac{\Phi}{\rho_r}$$

-
$$\varepsilon_{sm} = \frac{\sigma_s}{E_s} \left[1 - \beta_1 \beta_2 \left(\frac{\sigma_{sr}}{\sigma_s} \right)^2 \right]$$
 i cui simboli sono chiariti nel prospetto che segue.

In particolare:

- σ_s è la tensione nell'acciaio calcolata nella sezione fessurata per la combinazione di azioni considerata, in corrispondenza del livello baricentrico dell'armatura all'interno dell'area efficace;
- σ_{sr} è la tensione nell'acciaio calcolata nella sezione fessurata per la sollecitazione corrispondente al raggiungimento della resistenza a trazione f_{ctm} nella fibra di cls più sollecitata in sezione interamente reagente, in corrispondenza del livello baricentrico dell'armatura all'interno dell'area efficace.

Per quanto concerne il calcolo di σ_{sr} si procede così:

- si determina il momento di inerzia I della sezione (prescindendo dall'armatura) nel piano di sollecitazione considerato, considerando la sezione interamente reagente (I° stadio);
- ricordo ora che la tensione nella generica fibra di cls più esterna (ossia più sollecitata) è data da:

$$\sigma_c = \frac{M}{I} y_{\text{max}}$$
 con $y_{\text{max}} = \text{massima distanza della fibra di cls dall'asse baricentrico della sezione;}$

- per la definizione di σ_{sr} , deve essere M la sollecitazione corrispondente al raggiungimento della f_{ctm} nella fibra di cls più sollecitata in sezione interamente reagente, per cui

$$M = \frac{I}{y_{\text{max}}} f_{ctm}$$

- da cui σ_{sr} è la tensione calcolata nella sezione fessurata (ossia con cls non reagente a trazione : II $^{\circ}$ stadio)

D1-CL-VI06-001.doc pag. 90 di 137

Di seguito, per <u>combinazioni quasi permanenti</u> si intendono le **FI e FIII**, mentre per combinazione rara si intende la FII.

10.3 I muri andatori

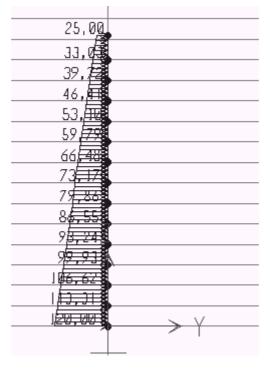
Per la valutazione delle sollecitazioni sui muri andatori si considera una piastra di dimensioni 9.30 m x 7.10 m incastrata su due lati. I muri andatori hanno dimensioni in pianta di 1,00 x 9,30 m. La verifica verrà effettuata considerando una sezione unitaria.

Di seguito vengono calcolate le pressioni applicate in testa ed alla base per le condizioni di carico non sismiche e sismiche.

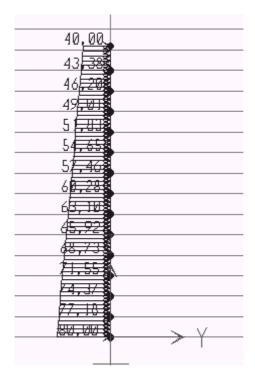
10.3.1.1 Calcolo delle pressioni

Carichi non sismici S.L.U.

Carichi costanti				N	Iuro di risv	olto					
	γ	Spess.	h	L	Reazione	coeff.	coeff.	q	qtot (kN/mq)	γs	Taglio
sp. Permanenti			1,00	1,00		0,490		12,50	6,13	1	43,488
sp.Treno di carico			1,00	1,00		0,490		0,00		1	
incr. Sp. Terra	18		7,10	1,00		0,172			21,98	1	78,03
incr. Sp. Perm.			1,00	1,00		0,172		12,50	2,15	1	
incr. sp.Treno di carico			1,00	1,00		0,172		0,00		1	
inerzia muro	25	1,00	7,10	1,00		0,350			8,75	1	62,125
Subtotale									39,01		
Carichi triangolari]
						·			n (kN/mq)		
Spinta Terra	18		7,1			0,490			62,62	1	222,31
Totale									79,65		421,22

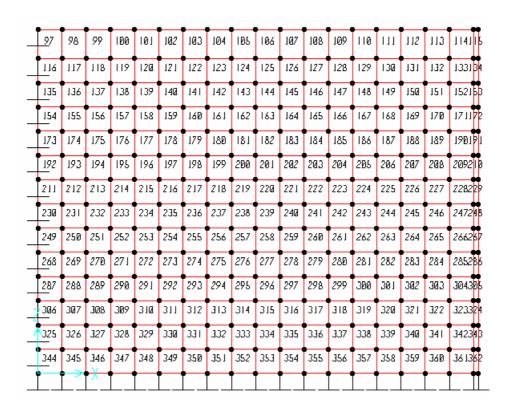

D1-CL-VI06-001.doc pag. 91 di 137

Carichi sismici S.L.U.

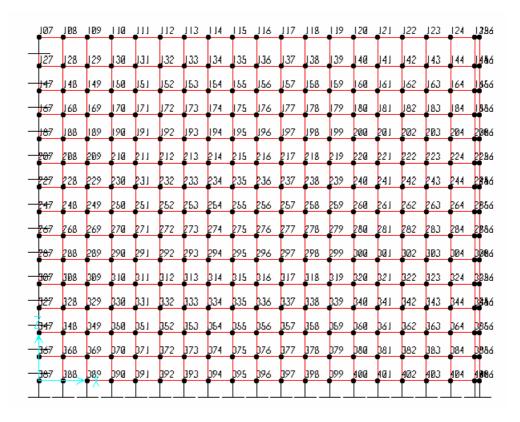

				Muro di	risvolto				
Carichi costanti									
	γ	Spess.	h	L	coeff.	q	qtot (kN/mq)	γs	Taglio
sp. Permanenti sp.Treno di carico subtotale		7,1 7,1	1,00 1,00	1,00 1,00	0,490 0,490	12,50 19,10	9,19 14,04 23,23	1,5 1,5	
Carichi triangolari							n (kN/mq)		
Spinta Terra Totale	18	3	7,1		0,490		93,93 117,16	1,5	333,40 498,3 7

D1-CL-VI06-001.doc pag. 92 di 137

Le verifiche agli S.L.U. vengono svolte tramite un modello agli elementi finiti, il carico è stato discretizzato con pressioni costanti per ogni schell, crescenti in direzione verticale e costanti in direzione orizzontale.



Andamento delle pressioni (carico sismico)



Andamento delle pressioni (carico non sismico)

D1-CL-VI06-001.doc pag. 93 di 137

Mesh di calcolo, con elementi shell

Pianta con i nodi di riferimento

D1-CL-VI06-001.doc pag. 94 di 137

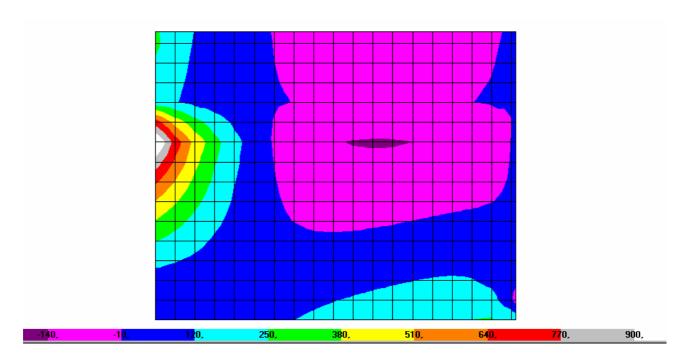


Diagramma dei Momenti in direzione orizzontale sulla zattera

D1-CL-VI06-001.doc pag. 95 di 137

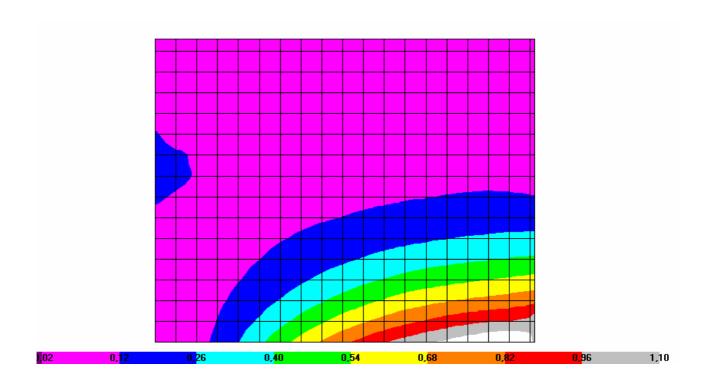
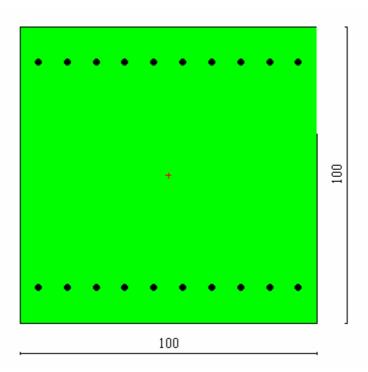
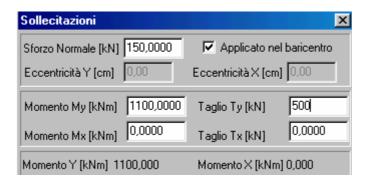


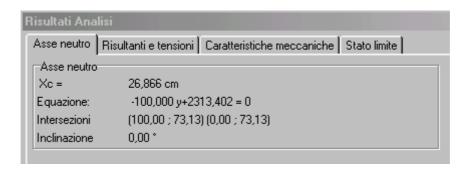
Diagramma dei Momenti in direzione verticale sulla zattera

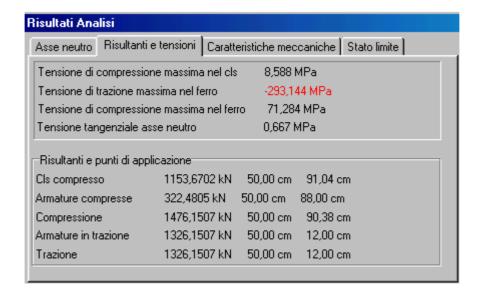

D1-CL-VI06-001.doc pag. 96 di 137

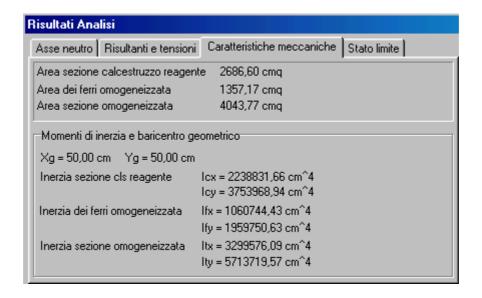

10.3.2 La parte inferiore

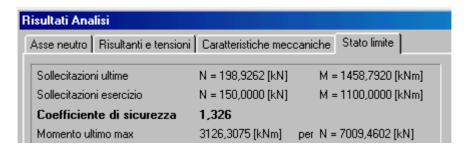
Verifica a presso flessione

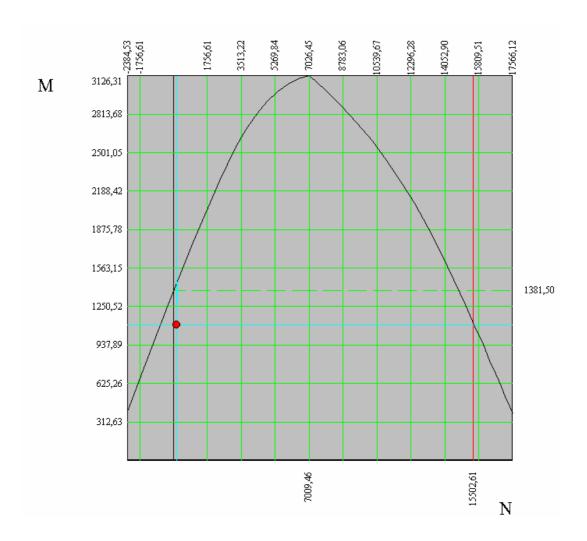
direzione verticale


 $\begin{array}{lll} N & = & 150 \ kN \\ M & = & 1100 \ kNm \\ T & = & 500 \ kN \end{array}$

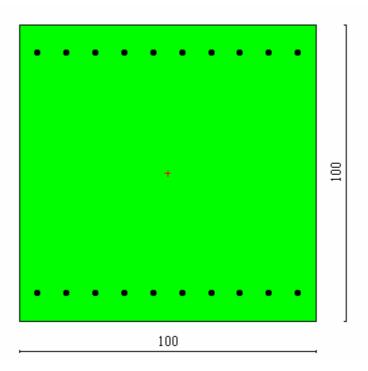


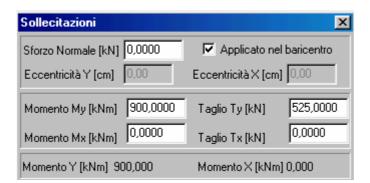

D1-CL-VI06-001.doc pag. 97 di 137

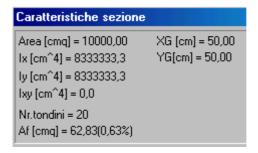



D1-CL-VI06-001.doc pag. 98 di 137

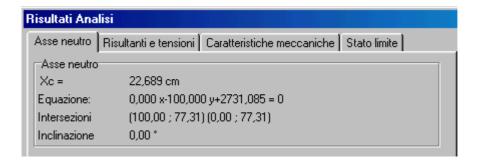
D1-CL-VI06-001.doc pag. 99 di 137


Dominio di resistenza

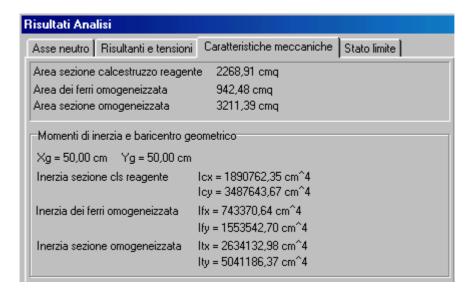



D1-CL-VI06-001.doc pag. 100 di 137

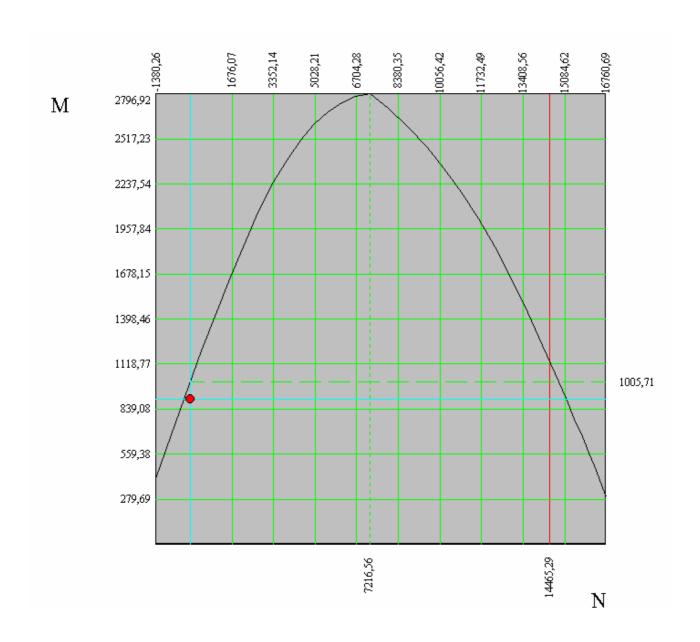
direzione orizzontale


M = 900 kNm T = 500 kN



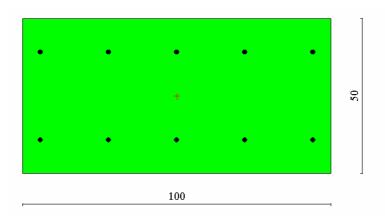


D1-CL-VI06-001.doc pag. 101 di 137



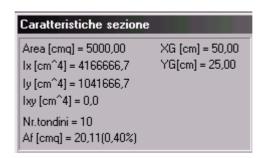
D1-CL-VI06-001.doc pag. 102 di 137

Dominio di resistenza

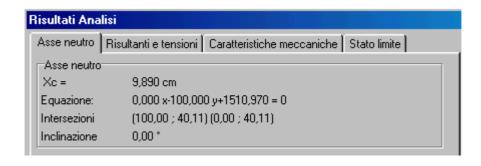


D1-CL-VI06-001.doc pag. 103 di 137

10.3.3 La parte superiore del muro

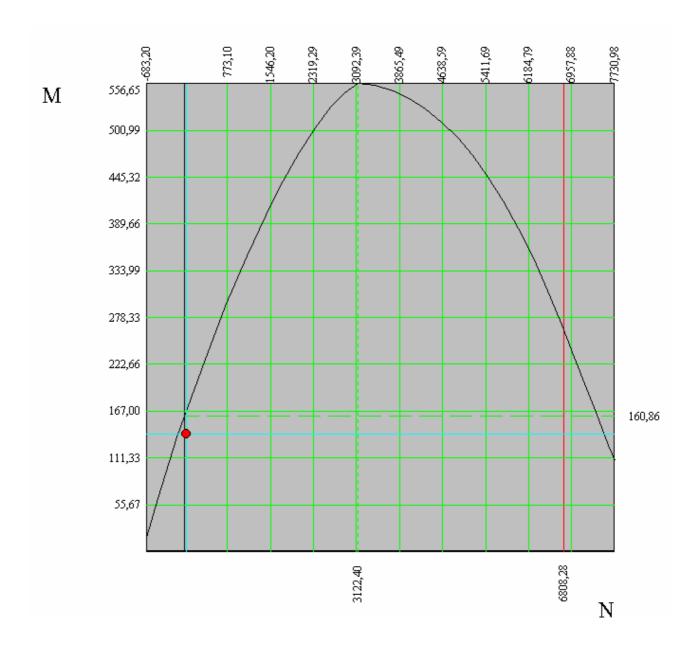

La sezione di verifica ha H=50 cm

direzione verticale



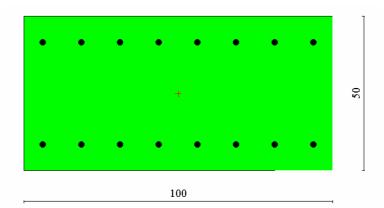
B=100cm

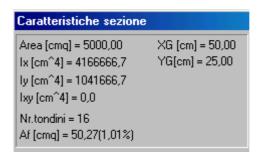
D1-CL-VI06-001.doc pag. 104 di 137

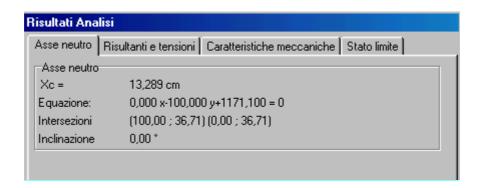

Asse neutro - Risultanti	e tensioni Caratt	eristiche med	ccaniche Stato limite
Tensione di compressio	one massima nel cls	8,293	MPa
Tensione di trazione ma	assima nel ferro	-368,6	50 MPa
Tensione di trazione mi	nima nel cls	-11,44	42 MPa
Tanaiana tanaanaiala a	ana nautra	0.315	MD-
i ensione tangenziale a	sse neutro	0,313	мга
Tensione tangenziale a Risultanti e punti di app Cls compresso		50,00 cm	мга 46,70 cm
Risultanti e punti di app	olicazione 410,1101 kN		46,70 cm
Risultanti e punti di app Cls compresso	olicazione 410,1101 kN	50,00 cm	46,70 cm
Risultanti e punti di app Cls compresso Armature compresse	olicazione 410,1101 kN 0,0000 kN 0	50,00 cm 1,00 cm 0,1	46,70 cm 00 cm 46,70 cm

· ·	
Asse neutro Risultanti e tension	i Caratteristiche meccaniche Stato limite
Area sezione calcestruzzo reager	nte 989,03 cmq
Area dei ferri omogeneizzata	301,59 cmq
Area sezione omogeneizzata	1290,62 cmq
Inerzia sezione cls reagente	lex = 824191,64 cm^4
Inerzia sezione cls reagente	lex = 824191,64 cm^4
	lcy = 405846,98 cm^4
Inerzia dei ferri omogeneizzata	Ifx = 294601,97 cm ⁴
Inerzia dei ferri omogeneizzata	

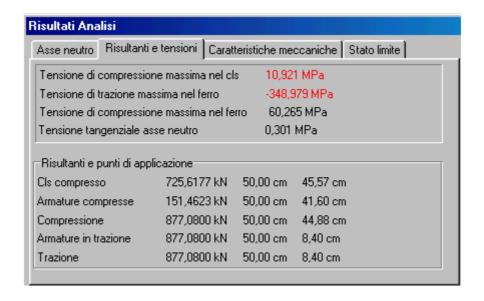
D1-CL-VI06-001.doc pag. 105 di 137

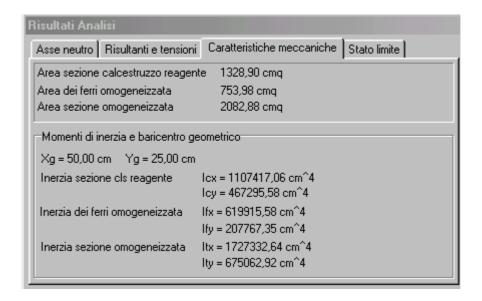

Dominio di resistenza

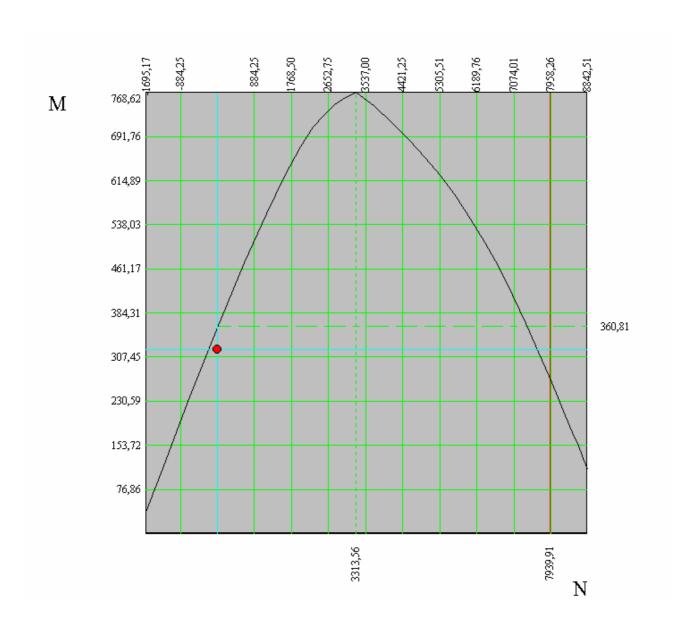

D1-CL-VI06-001.doc pag. 106 di 137


direzione orizzontale

M = 320 kNm T = 110 kN






D1-CL-VI06-001.doc pag. 107 di 137

D1-CL-VI06-001.doc pag. 108 di 137

Verifica a taglio

Il taglio di calcolo non deve superare il valore che, con riferimento alla resistenza di trazione di calcolo f_{cdd} , determina la formazione delle fessure oblique.

$$f_{\rm ctm} = 0.27 ({\rm Rck})^{2/3} = 0.27*35^{2/3} = 2.89 \,{\rm Mpa}$$
 $f_{\rm ctk} = 0.7*2.89 = 2.02 \,{\rm Mpa}$ $f_{\rm ctk}$ coincidente con $f_{\rm ctd}$ essendo la verifica agli S.L.U. $V_{\rm cd} = (0.6*2.02*1.00*0.80)*10^3 = 969.60 \,{\rm kN}$

Non si ha bisogno di armare a taglio essendo V $_{\rm cd}$ > V $_{\rm sdu}$

D1-CL-VI06-001.doc pag. 109 di 137

11 Analisi pesi propri strutturali e sovraccarichi permanenti

11.1 Pesi propri strutturali (g₁)

Per il calcolo dei pesi propri strutturali provenienti dall'impalcato si rimanda alla relazione tecnica di predimensionamento generale per impalcati da 30 m.

11.2 Sovraccarichi permanenti portati (g,)

Per il calcolo dei sovraccarichi portati provenienti dall'impalcato si rimanda alla relazione tecnica di predimensionamento generale per impalcati da 30 m.

12 Analisi dei sovraccarichi di esercizio

12.1 Carichi mobili (q₁)

Per il calcolo dei carichi mobili (azioni verticali), provenienti dall'impalcato si rimanda alla relazione tecnica di predimensionamento generale per impalcati da 30 m.

12.2 Incremento dinamico (q_2)

L'entità dei carichi mobili deve essere maggiorata per tener conto degli effetti dinamici, attraverso il seguente coeff. di incremento dinamico Φ :

 Φ c.a.p. = 1.4 – (L-10)/150 = 1.28 con L=luce di calcolo = 28.4m

D1-CL-VI06-001.doc pag. 110 di 137

12.3 Azione longitudinale della frenatura (q_3) .

La frenatura è assunta come percentuale (10%) del peso della singola colonna di carico accidentale più pesante. La pila P3 è sottoposta all'azione franante di quattro impalcati.

$$FI = 0.1(200*3 + 30*(30*4-9)) = 393KN > 20\%Q1a = 222KN$$

12.4 Azione trasversale centrifuga (q_4) .

Ragionando con un raggio di curvatura R=60m risulta un carico Ft=0.0925KN/m, trascurabile.

12.5 Azione trasversale del vento (q_5) .

É stato considerato l'effetto del vento trasversale (q_5) sia in presenza di carichi accidentali che in assenza di questi ultimi, nei termini di 2.5kN/mq.

12.6 Azione sismica (q_6) .

Gli effetti sismici sono stati valutati mediante l'analisi semplificata delle relative pile, come indicato nella bozza della normativa sismica 25/05/2003.

$$F = M \cdot S_d(T_1)$$

nella quale la massa M vale rispettivamente:

- l'intera massa dell'impalcato, più la massa della metà superiore di tutte le pile, nel caso (a);
- la massa di impalcato afferente alla pila, più la massa della metà superiore della pila, nel caso c).

 $S_d(T_I)$ è l'ordinata dello spettro di risposta di progetto definito al punto 5.2.7.

Il periodo T_I è dato in entrambi i casi dall'espressione:

$$T_1 = 2\pi \sqrt{\frac{M}{K}}$$

nella quale K è la rigidezza complessiva del modello considerato.

Categoria suolo	S	T_B	T_C	T_D
A	1,0	0,15	0,40	2,0
В, С, Е	1,25	0,15	0,50	2,0
D	1,35	0,20	0,80	2,0

D1-CL-VI06-001.doc pag. 111 di 137

5.2.1 Zone sismiche

Ai fini dell'applicazione di queste norme, il territorio nazionale viene suddiviso in zone sismiche, ciascuna contrassegnata da un diverso valore del parametro a_g = accelerazione orizzontale massima su suolo di categoria A (definito al punto 5.1). I valori di a_g , espressi come frazione dell'accelerazione di gravità g, da adottare in ciascuna delle zone sismiche del territorio nazionale sono:

Zona	Valore di ag
1	0,35g
2	0,25g
3	0.15g
4	0,05g

5.2.6 Spettri di progetto per lo stato limite di collasso

Ai fini del progetto, e per evitare il ricorso ad analisi non lineari, le capacità dissipative delle strutture possono essere messe in conto attraverso un fattore riduttivo delle forze elastiche, denominato fattore di struttura q. L'azione sismica di progetto $S_d(T)$ è in tal caso data dallo spettro di risposta elastico di cui al punto 5.2.5, con le ordinate ridotte utilizzando il fattore q. I valori numerici del fattore q vengono definiti al punto 5.5.

Lo spettro di progetto per le componenti orizzontali è definito dalle seguenti espressioni:

$$0 \le T < T_{B}$$

$$S_{d}(T) = a_{g} \cdot S \cdot \left[1 + \frac{T}{T_{B}} \cdot \left(\frac{2.5}{q} - 1 \right) \right]$$

$$T_{B} \le T < T_{C}$$

$$S_{d}(T) = a_{g} \cdot S \cdot \frac{2.5}{q}$$

$$T_{C} \le T < T_{D}$$

$$S_{d}(T) = a_{g} \cdot S \cdot \frac{2.5}{q} \left(\frac{T_{C}}{T} \cdot \right)$$

$$T_{D} \le T$$

$$S_{d}(T) = a_{g} \cdot S \cdot \frac{2.5}{q} \cdot \left(\frac{T_{C}T_{D}}{T^{2}} \right)$$

$$S_{d}(T) = a_{g} \cdot S \cdot \frac{2.5}{q} \cdot \left(\frac{T_{C}T_{D}}{T^{2}} \right)$$

in cui T_A , T_B , T_C , T_D sono definiti in tab. 3.1. Si assumerà comunque $S_d(T) \ge 0.2a_g$.

A meno di adeguate analisi giustificative, lo spettro di progetto della componente verticale dell'azione sismica è dato dalle seguenti espressioni, assumendo q = 1:

5.5 Valori del coefficiente di struttura

I massimi valori utilizzabili per il fattore q nel caso di ponti a pile in cemento armato e impalcato a travata continua sono:

- ponti con pile a comportamento flessionale (H/L 3,5) q =

- ponti con pile tozze (H/L 1) q=1,0- valore di q per il calcolo delle spalle q=1,0

(per $I ext{ } H/L ext{ } 3.5 ext{ } q$ si ottiene per interpolazione lineare).

D1-CL-VI06-001.doc pag. 112 di 137

$$W_{impalcato} = 7292x1 = 7292kN$$

$$M_{impalcato} = 794 \frac{kN}{m/s^2}$$

$$H_{pila} = 1.2 + 5 + 3.05 = 9.25m$$

$$W_{pila} = 758 + 385 = 1143kN$$

$$M_{impalcato} = 117 \frac{kN}{m/s^2}$$

$$M_{totale} = 794 + 117 = 911 \frac{kN}{m/s^2}$$

$$K_{long.} = \frac{3EI_{long.}}{l^3} = \frac{3x33722000x1,18}{9.25^3} = 150.832 \frac{kN}{m}$$

$$T_{long.} = 2\pi \sqrt{\frac{911}{150.832}} = 0.49s$$

$$K_{trasv.} = \frac{3EI_{trasv.}}{l^3} = \frac{3x33722000x12,98}{9,25^3} = 1.659.144 \frac{kN}{m}$$

$$T_{trasv.} = 2\pi \sqrt{\frac{911}{1.659.144}} = 0.15s$$

$$S_d(T) = 0.35 gx1x \frac{2.5}{3.5} \left(\frac{0.4}{0.49} \right) = 0.21g$$

$$S_d(T) = 0.35 gx1x \frac{2.5}{3.5} = 0.25 g$$

D1-CL-VI06-001.doc pag. 113 di 137

12.7 Azione longitudinale attritiva (q_7) .

Si è assunto:

l'attrito dei vincoli pari al 8% dei carichi permanenti .

12.8 Analisi della pila mobile P2

Per l'analisi della pila mobile si effettua il calcolo mediante solutore agli elementi finiti Sap2000 mediante elementi frame di sezione General con le caratteristiche inerziali dei vari elementi costituenti la pila che possiamo individuare come, Pulvino, Braccia, Fusto e Zattera di Fondazione.

Nelle seguenti immagini si riporta la carpenteria della pila mobile di maggiore altezza.

Nella seguente immagine si riporta la schematizazzione in elementi Frame per la modellazione agli elementi finiti.

La modellazione unifilare è relativa alla linea d'asse dei vari elementi.

D1-CL-VI06-001.doc pag. 114 di 137

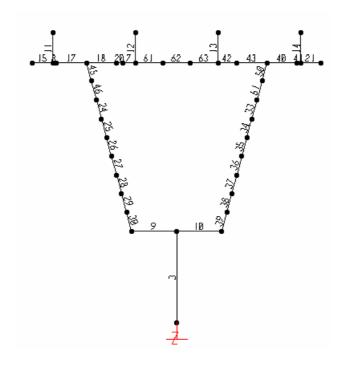
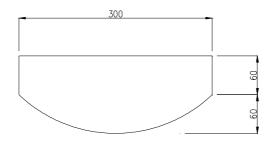


Figura 6-Numerazione delle aste.

Nella seguente tabella si riportano i carichi provenienti dall'impalcato sui quattro appoggi.

Azioni verticali al piano appoggi	Rv1	Rv2	Rv3	Rv4	
Peso proprio	699	699	699	699	
Permanenti portati	213	213	213	213	
Sovraccarichi mobili 1 STESA	647	386	126	-135	
Sovraccarichi mobili 2 STESA	775	514	254	_7	
Sovraccarichi mobili 3 STESA	727	558	389	219	
Folla	38	38	38	38	
Folla solo lato sinistro	73	37	1	-35	
	1712	1507	1302	1096	5617
Azioni trassv. al piano appoggi	Ht1	Ht2	Ht3	Ht4	
Vento	0	187.5	187.5	0	375


SismaX (azione dall'impalcato)=892 KN

Si riportano di seguito le combinazioni di carico considerate.

	COMBINAZIONI	g1	g2	g3	ε1	ε2	ε3	ε4	q1	q2	q3	q4	q5	q6	q7	q8	q9
	Al	1,00	1,00	1,00	1,00	1,00	1,00	1,00	0,00	0,00	0,00	0,00	1,00	0,00	1,00	0,00	1,00
SLE	All	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	0,00	0,00	0,60	0,00	1,00	1,00	1,00
S	AIII	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	0,00	0,20	0,00	1,00	1,00	1,00
	AIV	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	0,00	1,00	0,20	0,00	1,00	1,00	1,00
	AV	1,00	1,00	1,00	1,00	1,00	1,00	1,00	0,00	0,00	0,00	0,00	0,00	1,00	0,00	0,00	0,00
-																	
ne di																	
	FI	1,00	1,00	1,00	1,00	1,00	1,00	1,00	0,00	0,00	0,00	0,00	0,40	0,00	0,00	0,00	0,00
raz	FII	1,00	1,00	1,00	1,00	1,00	1,00	1,00	0,40	0,25	0,00	0,00	0,00	0,00	0,00	0,00	0,00
SLE fessurazio	FIII	1,00	1,00	1,00	1,00	1,00	1,00	1,00	0,40	0,25	0,00	0,00	0,00	0,00	0,00	0,00	0,00
SLE																	
	UI	1,50	1,50	1,50	1,20	1,20		1,20	1,20	0,00	0,00	0,00	0,00	1,50		1,50	1,50
SLU	UII	1,50	1,50	1,50	1,20	1,20		1,20	1,20	1,50	1,50	0,00	0,00	0,90		1,50	1,50
ls	UIII	1,50	1,50	1,50	1,20	1,20		1,20	1,20	1,50	1,50	1,50	0,00	0,30		1,50	1,50
	UIV	1,50	1,50	1,50	1,20	1,20		1,20	1,20	1,50	1,50	0,00	1,50	0,30		1,50	1,50

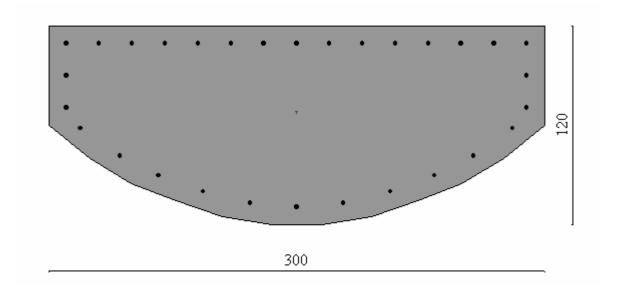
D1-CL-VI06-001.doc pag. 115 di 137

12.8.1 Verifica pulvino

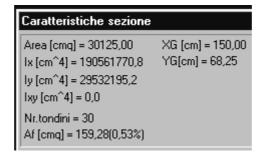
A (mq)	K torsionale	$J_x(m^4)$	$J_{y}(m^{4})$	A taglio y (mq)	A taglio x (mq)
3,032	1,069	1,925	0,299	3,032	3,032

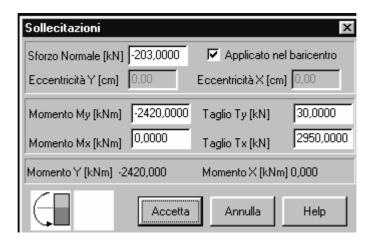
La combinazione di carico più gravosa per il pulvino Risulta essere la Sismax e le relative combinazioni di verifica sono:

N trazione = 203 kN


My = -2419,39 kNm

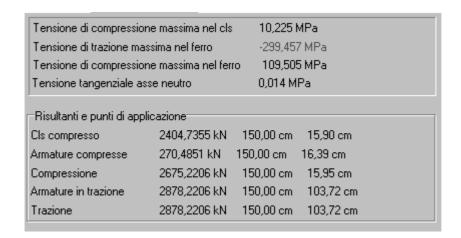
Mx = 0


Tx = -2947,35 kN


Sismay Ty = 30 kN

Si riporta di seguito la verifica corrispondente.

D1-CL-VI06-001.doc pag. 116 di 137


Asse neutro

Xc = 37,055 cm

Equazione: 0,000 x-240,183 y -7492,928 = 0

Intersezioni (270,09 ; 37,06) (29,91 ; 37,06)

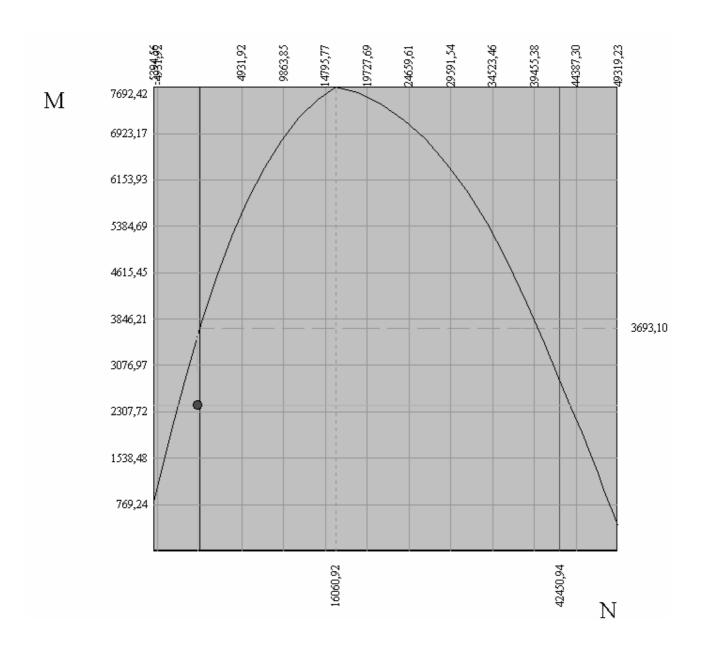
Inclinazione 0,00 *

D1-CL-VI06-001.doc pag. 117 di 137

Area sezione calcestruzzo reagente 5903,22 cmq
Area dei ferri omogeneizzata 2389,18 cmq
Area sezione omogeneizzata 8292,40 cmq

Momenti di inerzia e baricentro geometrico

Xg = 150,00 cm Yg = 68,25 cm
Inerzia sezione cls reagente Icx = 16999275,02 cm^4
Icy = 13025921,85 cm^4
Inerzia dei ferri omogeneizzata Ifx = 21337629,57 cm^4
Ify = 3584626,96 cm^4
Inerzia sezione omogeneizzata Itx = 38336904,59 cm^4
Ity = 16610548,82 cm^4


 Sollecitazioni ultime
 N = -297,6384 [kN]
 M = 3548,2013 [kNm]

 Sollecitazioni esercizio
 N = -203,0000 [kN]
 M = 2420,0000 [kNm]

 Coefficiente di sicurezza
 1,466

 Momento ultimo max
 7692,4162 [kNm]
 per N = 16060,9218 [kN]

D1-CL-VI06-001.doc pag. 118 di 137

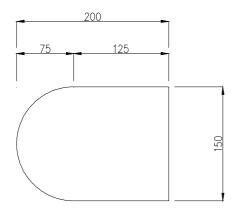
Verifica a taglio

Il taglio di calcolo non deve superare il valore che, con riferimento alla resistenza di trazione di calcolo f_{ctd} , determina la formazione delle fessure oblique.

$$f_{\text{ctm}} = 0.27 (\text{Rck})^{2/3} = 0.27*35^{2/3} = 2.89 \text{ Mpa}$$

 $f_{\text{ctk}} = 0.7*2.89 = 2.02 \text{ Mpa}$

 $f_{\rm ctk}$ coincidente con $f_{\rm ctd}$ essendo la verifica agli S.L.U.

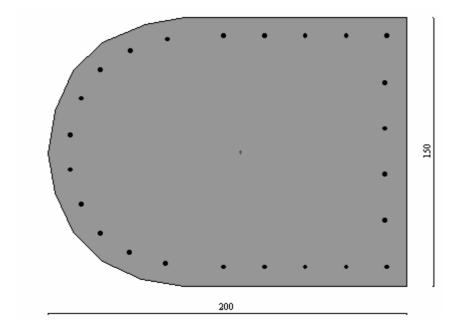

 $V_{cd} = (0.6*2.02*3.00*1.00)*10^3 = 3636 \text{ kN}$

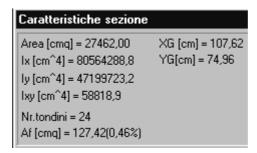
Non si ha bisogno di armare a taglio essendo $V_{cd} > V_{sdu}$

D1-CL-VI06-001.doc pag. 119 di 137

D1-CL-VI06-001.doc pag. 120 di 137

12.8.2 Verifica braccia


A (mq)	K torsionale	$J_x(m^4)$	$J_{y}(m^{4})$	A taglio y (mq)	A taglio x (mq)
2,759	0,687	0,8133	0,4758	2,759	2,759


La combinazione di carico più gravosa per le braccia risulta essere la Sisma X:

$$N_{compressione} = 2546,35 \text{ kN}$$
 $Mx = -3780 \text{ kNm}$
 $My = 0$
 $Sismay Tx = 112,7 \text{ kN}$
 $Ty = 1560 \text{ kN}$

Si riporta di seguito la verifica corrispondente.

D1-CL-VI06-001.doc pag. 121 di 137

Asse neutro

Xc = 58,049 cm

Equazione: 150,000 x-0,175 y -5163,433 = 0

Intersezioni (142,13 ; 150,00) (141,95 ; 0,00)

Inclinazione 89,93 *

D1-CL-VI06-001.doc pag. 122 di 137

Tensione di compressione massima nel cls 8,118 MPa
Tensione di trazione massima nel ferro -271,848 MPa
Tensione di compressione massima nel ferro 99,504 MPa
Tensione tangenziale asse neutro -0,049 MPa

Risultanti e punti di applicazione

 Cls compresso
 3523,5187 kN
 180,68 cm
 74,92 cm

 Armature compresse
 369,0189 kN
 184,84 cm
 74,90 cm

 Compressione
 3892,5376 kN
 181,07 cm
 74,92 cm

 Armature in trazione
 1342,5376 kN
 39,04 cm
 74,84 cm

 Trazione
 1342,5376 kN
 39,04 cm
 74,84 cm

Area sezione calcestruzzo reagente 8694,21 cmq
Area dei ferri omogeneizzata 1911,34 cmq
Area sezione omogeneizzata 10605,56 cmq

-Momenti di inerzia e baricentro geometrico

Xg = 107,62 cm Yg = 74,96 cm

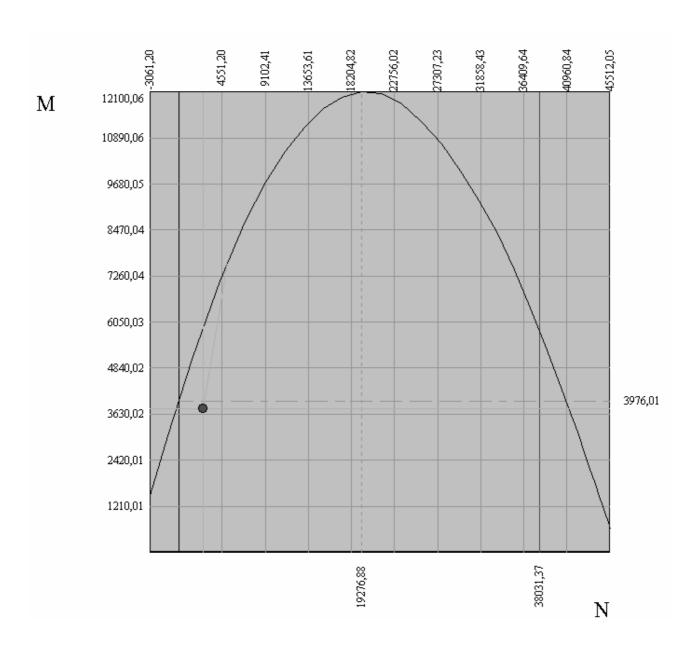
ley = 16301633,79 cm⁴

Inerzia dei ferri omogeneizzata Ifx = 8489503,79 cm^4

If $y = 5173788,12 \text{ cm}^4$

Inerzia sezione omogeneizzata Itx = 45874434,51 cm⁴

Ity = 21475421,91 cm⁴


 Sollecitazioni ultime
 N = 5121,3788 [kN]
 M = 7591,6909 [kNm]

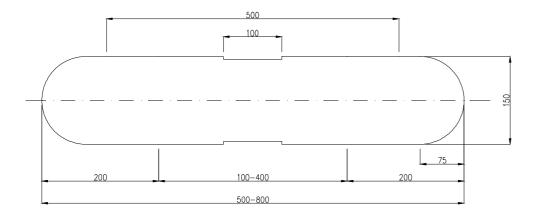
 Sollecitazioni esercizio
 N = 2550,0000 [kN]
 M = 3780,0000 [kNm]

 Coefficiente di sicurezza
 2,008

 Momento ultimo max
 12100,0614 [kNm] per N = 19276,8790 [kN]

D1-CL-VI06-001.doc pag. 123 di 137

Verifica a taglio

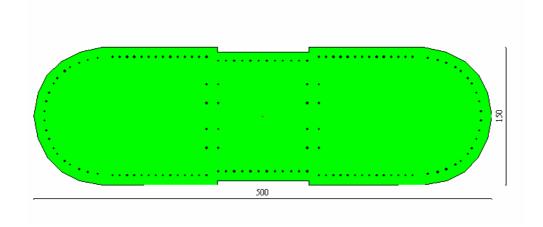

Il taglio di calcolo non deve superare il valore che, con riferimento alla resistenza di trazione di calcolo f_{ctd} , determina la formazione delle fessure oblique.

$$\begin{split} f_{\rm ctm} &= 0.27 ({\rm Rck})^{2/3} = 0.27^* 35^{2/3} = 2.89 \ {\rm Mpa} \\ f_{\rm ctk} &= 0.7^* 2.89 = 2.02 \ {\rm Mpa} \\ V_{\rm cd} &= (0.6^* 2.02^* 2.80^* 1.50)^* 10^3 = 5090 \ {\rm kN} \end{split}$$

Non si ha bisogno di armare a taglio essendo V $_{cd}$ > V $_{sdu}$

D1-CL-VI06-001.doc pag. 124 di 137

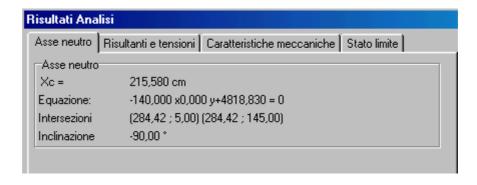
12.8.3 Verifica fusto

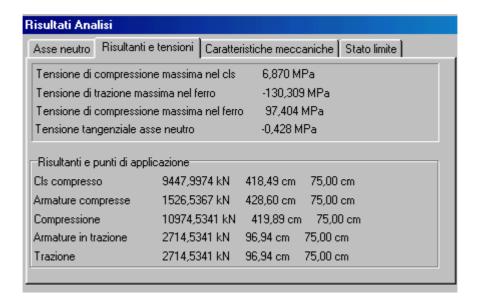

Ī	A (mq)	K torsionale	$J_x(m^4)$	$J_y(m^4)$	A taglio y (mq)	A taglio x (mq)
	6,917	2,265	12,98	1,18	6,917	6,917

La combinazione di carico più gravosa per il fusto risulta essere:

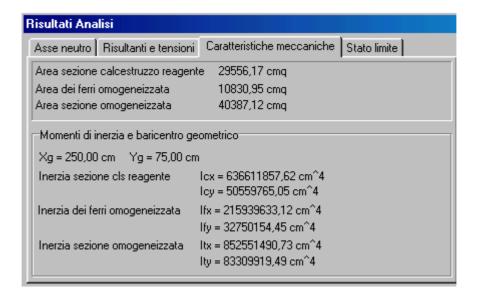
SISMAX

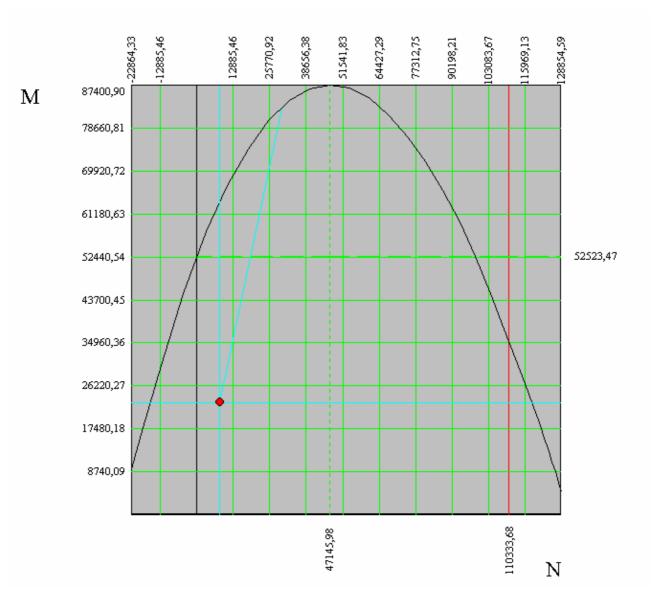
N compressione = 8267.32 kN Mx, max = 22798.65 kNm T = 2215.89 kN


Si riporta di seguito la verifica:



D1-CL-VI06-001.doc pag. 125 di 137





D1-CL-VI06-001.doc pag. 126 di 137

D1-CL-VI06-001.doc pag. 127 di 137

D1-CL-VI06-001.doc pag. 128 di 137

12.8.4 Verifica della zattera di fondazione

1. Calcolo della mensola in direzione trasversale

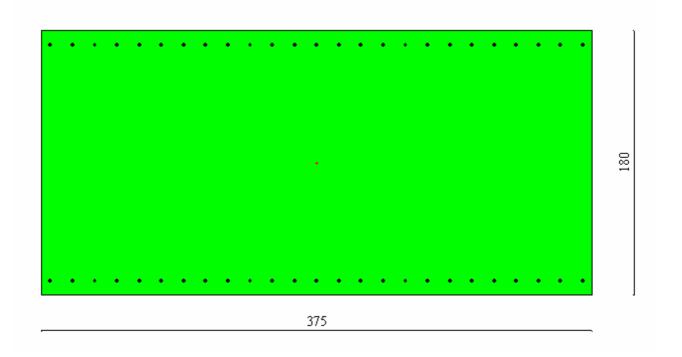
Caratteristiche della sezione resistente:

B=375 cm

H=180 cm

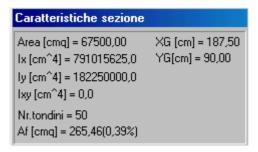
L= luce della mensola=4.75 m

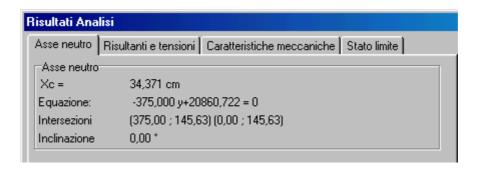
A= distanza di applicazione carico palo =3.25 m

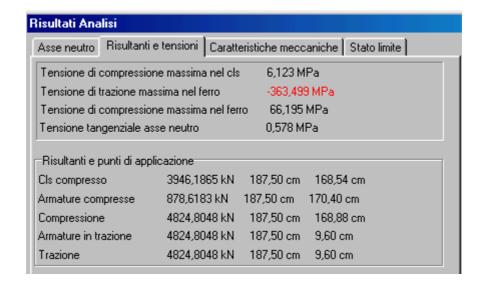

$$M_{plinto}\,=\,1.80^*25^*3.75^*4.75^2\!/2\,=\,1903.7\;kNm\,^*\,1,\!5\,=\,2855.6\;kNm$$

Combinazione UII pila P2

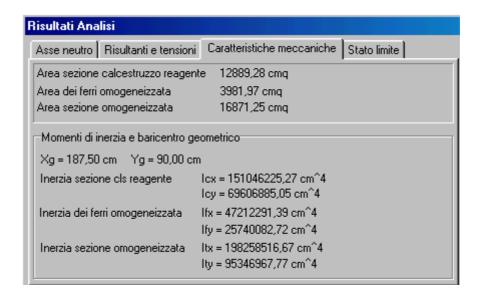
$$N_{palo}$$
 = 3413,72 kN
 M_{palo} = 3413,72*3.25 = 11094.59 kNm
 $M_{risultante}$ = 7860,87 kNm

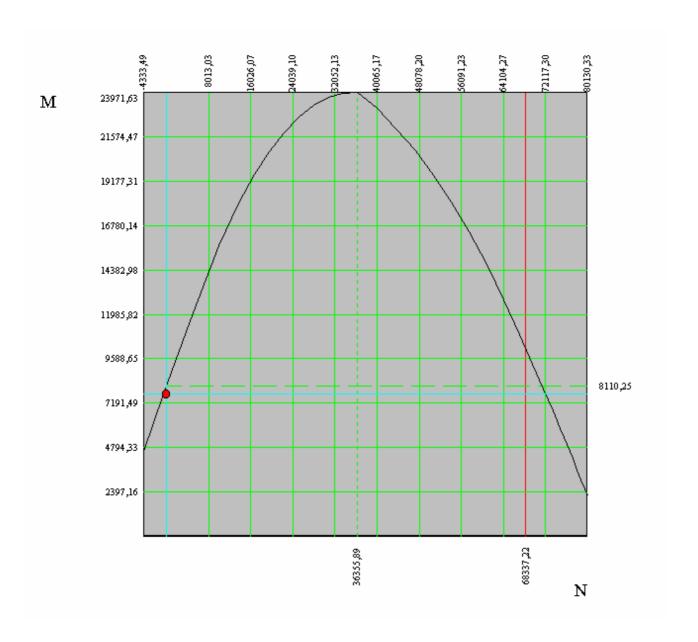

Essendo il rapporto tra punto di applicazione della forza e altezza > 1 si considera il funzionamento del traliccio a mensola classica.


La verifica verrà effettuata su una sezione di 3.75 x 1.80 m (area di influenza del palo di fondazione).



D1-CL-VI06-001.doc pag. 129 di 137





D1-CL-VI06-001.doc pag. 130 di 137

D1-CL-VI06-001.doc pag. 131 di 137

D1-CL-VI06-001.doc pag. 132 di 137

2. Calcolo della mensola in direzione longitudinale

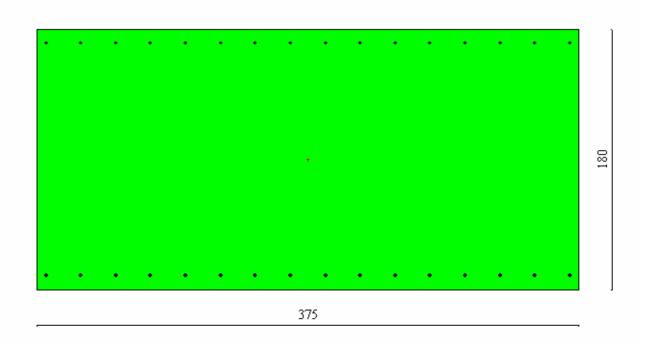
Caratteristiche della sezione resistente:

B=375 cm

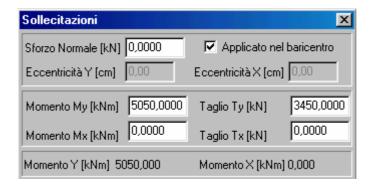
H=180 cm

L= luce della mensola=3.40 m

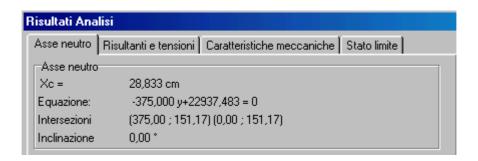
A= distanza di applicazione carico palo = 1.90 m

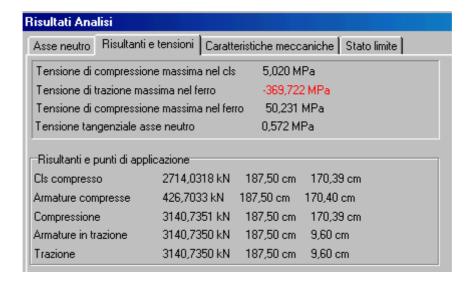

 $M_{plinto} = 1.80*25*3.75*3.40^2/2 = 975.37 \text{ kNm} * 1,5 = 1463.06 \text{ kNm}$

Combinazione UII pila P2

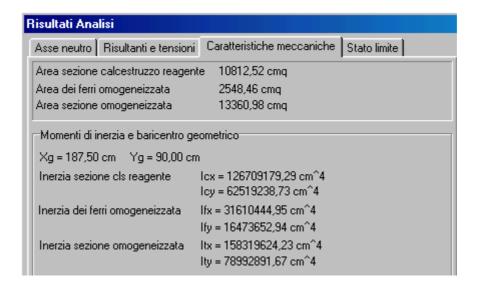

 N_{palo} = 3413,72 kN M_{palo} = 3413,72*1.90 = 6486.07 kNm $M_{risultante}$ = 5023,00 kNm

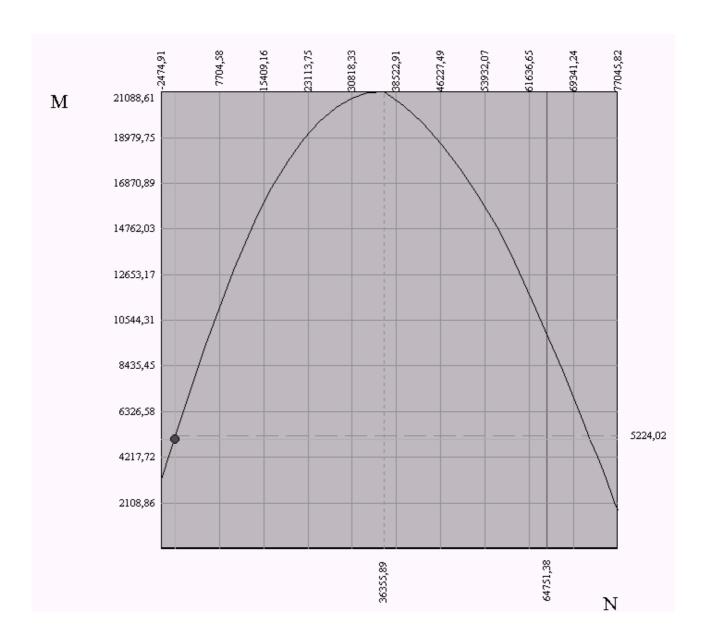
Essendo il rapporto tra punto di applicazione della forza e altezza > 1 si considera il funzionamento del traliccio a mensola classica.


La verifica verrà effettuata su una sezione di 3.75 x 1.80 m (area di influenza del palo di fondazione).



D1-CL-VI06-001.doc pag. 133 di 137





D1-CL-VI06-001.doc pag. 134 di 137

D1-CL-VI06-001.doc pag. 135 di 137

Verifica a taglio

Il taglio di calcolo non deve superare il valore che, con riferimento alla resistenza di trazione di calcolo f_{ctd} , determina la formazione delle fessure oblique.

$$f_{\text{ctm}} = 0.27 (\text{Rck})^{3/2} = 0.27*30^{2/3} = 2.607 \text{ Mpa}$$

$$f_{\text{ctk}} = 0.7*2.607 = 1.82 \text{ Mpa c}$$

coincidente $con f_{ctd}$ essendo la verifica agli S.L.U.

$$V_{cd} = (0.6*1.82*3.75*1,70)*10^3 = 6961.5 \text{ kN}.$$

Non si ha bisogno di armare a taglio essendo V $_{cd}$ > V $_{sdu}$ essendo V $_{sdu}$ = N $_{palo}$.

D1-CL-VI06-001.doc pag. 136 di 137

Verifica a punzonamento del palo sulla zattera di fondazione

In corrispondenza dei pilastri e di carichi concentrati si effettua la verifica a punzonamento, la forza resistente al punzonamento in assenza di apposita armatura è assunta pari a:

$$F = 0.5 * u * h * f_{ctd} = 0.5 * 8.01 * 1.80 * 1.82 * 1.000 = 13120 \text{ kN}$$

Con u = perimetro medio della sezione di scorrimento; h = altezza della zattera;

Dall'analisi risulta N < F, con coefficiente di sicurezza 3.10

Verifica a punzonamento del fusto sulla zattera di fondazione

Il carico massimo verticale trasmesso la fusto alla fondazione si determina per la combinazione di carico UIV e risulta pari a 10895 kN.

In corrispondenza dei pilastri e di carichi concentrati si effettua la verifica a punzonamento, la forza resistente al punzonamento in assenza di apposita armatura è assunta pari a:

$$F = 0.5 * u * h * f_{ctd} = 0.5*17.2*1.80*1.82*1.000 = 28173 \text{ kN}$$

Con u = perimetro medio della sezione di scorrimento; h = altezza della zattera;

Dall'analisi risulta N < F, con coefficiente di sicurezza 1,25

D1-CL-VI06-001.doc pag. 137 di 137